Cumulative Subject Index for Volumes 114-1201 A Acidity Nb₂O₅/TiO₂ photocatalyst surface, 115, 187 Alloys A15-type superconductor, displacive crystallographic phase transition for, model, 119, 364 $(AgIn)_{2(1-z)}(MnIn_2)_zTe_4$, T(z) diagram and optical energy gap values, 114. 539 Zn_{1-z}Mn_zGa₂Se₄, energy gap values and T(z) diagram, 115, 416 Alluaudite $NaMn_3(PO_4)(HPO_4)_2$, synthesis and structure, 115, 240 Aluminum Ag₃[Al₃Si₃O₁₂], structures at 298, 623, and 723 K from Rietveld refinements of powder X-ray diffraction data, 115, 55 Al+3, effect of structure on Cu-Zn coprecipitate, 115, 204 $A_6T_4Al_{43}$ (A = Y,Nd,Sm,Gd-Lu,U; T = Ti,V,Nb,Ta), with Ho₆ Mo₄Al₄₃-type structure, preparation, 116, 131 AT_2Al_{20} (A = rare earths,U; T = Ti,Ta,Mo,W), with $CeCr_2Al_{20}$ -type structure. 114, 337 α - and β -AlF₃ · 3H₂O, incorporation of Cu(II), analysis by ESR, 116, 249 $\alpha\text{-}Al_2O_3$, relationship between valence force constants and elastic constants, 116, 378 $Al_{28}O_{21}C_6N_6$, diamond-related compound in system $Al_2O_3-Al_4C_3-AlN$, identification, 120, 211 Al-O-R-O-Al, characterization by IR and ¹³C and ²⁷Al NMR techniques, 119, 319 $Al_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, synthesis and crystal structure, 120, 197 Ba-β-Al₂O₃, materials for high-temperature catalytic combustion, crystal structure, 114, 326 $BaAl_9O_{14.5}$, $BaAl_{12}O_{19}$, and $BaAl_{14}O_{22}$, FT-IR skeletal powder spectra, 117. 8 $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ (R = Gd-Lu,Y,Sc), structural study, 118, 180 Bi₂Fe_{4-r}Al₂O₉, structural and magnetic studies, 114, 199 Ca₄Al₆O₁₆S, crystal structure, 119, 1 CaMg₂Al₁₆O₂₇ phase relationships in CaO-Al₂O₃-MgO system, 120, 358 structure refinement, 120, 364 Ca₂Mg₂Al₂₈O₄₆ phase relationships in CaO-Al₂O₃-MgO system, 120, 358 structure refinement, 120, 364 CaO-Al₂O₃-MgO system, Al-rich part, phase relationships, **120**, 358 CeCr₂Al₂₀, related structure, AT_2 Al₂₀ (A = rare earths,U; T = Ti,Ta, Mo,W) ternary aluminides with, **114**, 337 Cs₉Mo₉Al₃P₁₁O₅₉, with tunnel structure, isolation, 114, 451 -Cu-Cr spinel oxide semiconductors, compensated, analysis, 120, 388 $Ho_6Mo_4Al_{43}$, related type structure of $A_6T_4Al_{43}$ (A = Y,Nd,Sm,Gd-Lu,U; T = Ti,V,Nb,Ta), 116, 131 KAISiO₄ polymorphs, synthesis and characterization on SiO₂-KAlO₂ join, 115, 214 (Mg,Na,Al)2(Al,Zn)3, crystal structure, 115, 270 Mn₃Al_{2-x}Cr_xGe₃O₁₂, X-ray absorption spectroscopic and magnetic analysis, 118, 261 α -Na₃Al₂(AsO₄)₃, crystal structure: structural relation to II-Na₃ Fe₂(AsO₄)₃, 118, 33 $NaAlO_2 \cdot 5/4H_2O$, and dehydration product, crystal structure, 115, 126 $Na_4Al(PO_4)_2(OH)$, synthesis and characterization, 118, 412 Ni-Al-M (M = Cr, Fe), synthesis and characterization, 118, 285 SiO₂-KAlO₂ join, KAlSiO₄ polymorphs, synthesis and characterization, 115, 214 U₂Fe_{17-x}Al_xC_y, magnetic properties, 115, 13 Zn-Al layered double hydroxides, preparation by surface modification of layered compound, 117, 337 Aluminum oxide and silica pillared materials, zeolite-like, preparation, 120, 381 o-Aminophenol in silver colloids, analysis by SERS, 116, 427 Ammonia gaseous, in temperature-programmed synthesis of V-Me-O-N (Me = Mo,W) synthesis, 116, 205 Ammonium M_2 HPO₄-(NH₄)₂HPO₄-H₂O ($M = \text{Na,K,NH_4}$), electrical conductivity measurements, **119**, 68 $NH_4X-CuX_2-H_2O(X^- \approx Cl^-,Br^-)$, double salts, 114, 385 (NH₄)₃FeF₆ (Ba_{1-x}Sr_x)₂(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O₆₋₈, with related structure, powder X-ray and neutron diffraction analysis, **115**, 197 $(NH_4)_2HPO_4-M_2'HPO_4-H_2O$ ($M' = Na,K,NH_4$), electrical conductivity measurements, 119, 68 NH₄Mo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 $(NH_4)_2\dot{M}oO_4$, hydrothermal preparation, structure, and reactivity, 117, 323 (NH₄)₂Mo₃O₁₀ · H₂O, crystal structure, determination by powder diffraction, 116, 422 NH₄Sn₂(PO₄)₃, hydrothermal synthesis and characterization, 119, 197 (NH₄)₆[TeMo₆O₂₄] · 7H₂O, single crystals, infrared and polarized Raman spectra, 118, 341 (NH₄)₆[TeMo₆O₂₄] · Te(OH)₆ · 7H₂O, single crystals, infrared and polarized Raman spectra, 118, 341 (NH₄)₂V₃O₈ fresnoite-type vanadium oxides, magnetic susceptibility, 114, 499 (NH₄)₂(WO₃)₃SeO₃, synthesis, crystal structure and properties, 120, 112 Annealing LaMnO₃₊₈ powder in air, 119, 164 Antiferromagnetism in A-B interactions between tetrahedral $3d^5$ and $3d^5$ or $3d^3$ octahedral cations in oxidic lithium spinels, electronic spectrum, 120, 244 CoU₂O₆, 114, 595 NiU₂O₆, 114, 595 Antimony AAgSb₂ (A = Y,La-Nd,Sm,Gd-Tm,U), with HfCuSi₂-type structure, preparation, 115, 305 REAgSb₂ (RE = Y,La-Nd,Sm,Gd-Tm), magnetism and crystal structure, 115, 441 ¹ Boldface numbers indicate the appropriate volume; lightface numbers indicate pagination. REBa₂SbO₆ (RE = Pr,Sm,Gd), synthesis and characterization, as substrates for YBa₂Cu₃O₇₋₈, 116, 193 (Ca_{0.9}Sb_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, 120, 105 Cs₄Sb₄O₈(Si_{4(1-x)}Ge_{4x}O₁₂), solid solution, electron and X-ray diffraction and 29Si MAS NMR analysis, 114, 528 CuSb₂O₆, long-range magnetic order, confirmation, 118, 199 HgBiSr₇Cu₂SbO₁₅, double cationic ordering, 116, 53 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2$ (0 < x < 0.4), synthesis and structure, 114, 399 β-Sb₂O₄-type structure, Bi₂O₄ with, 116, 281 $M_{1/2}Sb_{3/2}^{V}(PO_4)_3$ (M = Y,In,Sc), preparation and crystal structure, 118, 104 Sb₂(PO₄)₃, preparation and crystal structure, 118, 104 ≈SbVO₄, rutile-type, nonstoichiometry, 116, 369 MSn_2Sb_2 (M = Na,Sr), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 M_5 SnSb₃ (M =Na,K;), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 Sr₂Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xTe_{0.2}Sb_{0.8}O₆, mixed valent oxide ceramic, superconducting properties, 116, 355 Sr₂Zn_{1-x}Mn_xTe_{1-x}Sb_xO₆, mixed valent oxide ceramic, superconducting properties, 116, 355 YCa₂SbFe₄O₁₂, magnetic ordering, 115, 435 AAs_2O_6 (A = Mn,Co,Ni), structural and magnetic properties, 118, 402 $M_2As_2O_7$ (M = Ni,Co,Mn), magnetic properties and structures, 115, 229 BaCuAs₂O₇, synthesis and structure, 118, 280 CePd_{2-x}As₂, with ThCr₂Si₂ structure, structure refinement, 115, 37 Cs(TiAs)O₅, crystal structure, 120, 299 ACuAs₂ (A = Y,La-Nd,Sm,Gd-Lu), with HfCuSi₂-type structure, preparation, 115, 305 Li₃AsO₄, guest ion vibrational behavior, 115, 83 Mn₄As₃, synthesis, crystal structure, and relation to other manganese arsenides, 119, 344 α-Na₃Al₂(AsO₄)₃, crystal structure: structural relation to II-Na₃ Fe₂(AsO₄)₃, 118, 33 $NaCa_2M_2^{2+}$ (AsO₄)₃ (M^{2+} = Mg,Ni,Co), structure, 118, 267 II-Na₃Fe₂(AsO₄)₃, structural relation to α-Na₃Al₂(AsO₄)₃ and Na₇ Fe₄(AsO₄)₆ sodium ion conductors, 118, 33 Na₇Fe₄(AsO₄)₆, crystal structure: structural relation to II-Na₃ Fe₂(AsO₄)₃, 118, 33 NiAs filled structure, GdRuC2 with, 118, 158 NiAs-Ni₂In, intermetallic phases, superstructures in, analysis, 118, 313 Pb₂Cu(II)₇(AsO₄)₆, crystal structure, topological relationship to $Pb_2Cu(I)_2Cu(II)_6(AsO_4)_6$, 114, 413 Pb₂Cu(I)₂Cu(II)₆(AsO₄)₆, crystal structure, topological relationship to Pb₂Cu(II)₇(AsO₄)₆, 114, 413 $LnPd_3As_2$ (Ln = La-Nd,Sm,Gd) arsenides, 115, 37 MSn_2As_2 (M = Na,Sr), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 M_5 SnAs₃ (M = Na,K;), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 TIBeAsO₄, and TIBePO₄ stereochemical activity of thallium (I) lone pair, 114, 123 Aurivillius phases Raman modes, temperature and polarization dependence, 114, 112 В Band calculations Mn₂OBO₃, 114, 311 Barium Ba-β-Al₂O₃, materials for high-temperature catalytic combustion, crystal structure, 114, 326 BaAl₉O_{14.5}, BaAl₁₂O₁₉, and BaAl₁₄O₂₂, FT-IR skeletal powder spectra, 117.8 BaAu₂O₄, preparation and crystal structure, 118, 247 $Ba_{2-x}Bi_xCu_2O_5$ (0 $\leq x \leq 1.5$), synthesis and characterization, 114, 585 BaBiO_{3- δ} (0 $\leq \delta \leq$ 0.5), analysis, 117, 55 BaBiO₂Cl, cation ordering, 117, 201 BaCe, Pr_{1-v}O₃, magnetic properties, 119, 405 $BaCoO_{3-\nu}$, HREM study, 120, 327 $Ln_2BaCo_2O_7$ (Ln = Sm,Gd), synthetic, structural, electrical, and magnetic properties, 114, 286 Ba₂CoRuO₆, structural and electronic properties, 114, 174 $Ba_3Cr_2MO_9$ (M = Mo,W), structure and magnetic properties, 120, 238 BaCuAs₂O₇, synthesis and structure, 118, 280 BaCuO_{2+x}, structural, magnetic, and EPR studies, 119, 50 $RBa_2Cu_3O_{7-y}$ (R = Ln or Y), FT-IR skeletal study, 119, 36 $Ln_2Ba_2CuPtO_8$ (Ln = Ho-Lu), synthesis and characterization, 120, 316 BaCu₂S₂, electrical and magnetic properties, 117, 73 α-BaCu₄S₃, electrical and magnetic properties, 117, 73 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln = La-Tb), synthesis, structure, and superconductivity, 119, 224 BaEu(CO₃)₂, optical properties, correlation to crystallographic structure, 116, 286 $Ba_2M_2F_7Cl\ (M = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+})$, synthesis, magnetic behavior, and structural study, 115, 98 $Ba_2MM'F_7Cl(M,M'=Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$, synthesis, magnetic behavior, and structural study, 115, 98 BaFe_{12-2x}Co_xTi_xO₁₉ crystallite size and shape, determination by X-ray line broadening analysis, 114, 534 samples with composition range 0 < x > 0, synthesis for magnetic recording, 115, 347 BaFe_{12-2x}Ir_x Me_xO_{19} ($Me = Co,Zn; x \sim 0.85$), magnetic properties, cationic distribution in relation to, 120, 17 BaFe₁₂O₁₉, FT-IR skeletal powder spectra, 117, 8 Ba₂Fe₂Ti₄O₁₃, preparation, crystal structure, dielectric properties, and magnetic behavior, 120, 121 BaHgRuO₅, synthesis and structure, 120, 223 $[Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O]$, hydrogen-bonding system, 114, 102 BaLaCoRuO₆, structural and electronic properties, 114, 174 Ba₄LiCuO₄(CO₃)₂, electronic and vibrational spectra, 119, 359 $BaMnO_{3-y}$ (0.22 $\leq y \leq 0.40$), ordering and
defects, 117, 21 $Ln_{1-x}Ba_xMnO_3$ (Ln = rare earths), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204 BaMo₄O₁₃ · 2H₂O, hydrothermal synthesis and crystal structure, 116, 95 BaMo(PO₄)₂, with yavapaiite layer structure, synthesis and characterization, 116, 364 Ba₄NaCuO₄(CO₃)₂, electronic and vibrational spectra, 119, 359 BaNb_{0.8}S₃₋₆, structure and physical properties, 115, 427 BaNbS₃, structure and physical properties, 115, 427 $[Ba_2(OH)_2(H_2O)_{10}][Se_4]$, synthesis and crystal structure, 120, 12 BaPrO₃, magnetic properties, 119, 405 REBa₂SbO₆ (RE = Pr,Sm,Gd), synthesis and characterization, as substrates for YBa₂Cu₃O₇₋₈, 116, 193 $Ba_{5-\nu}Sr_{\nu}R_{2-x}Al_{2}Zr_{1+x}O_{13+x/2}$ (R = Gd-Lu,Y,Sc), structural study, **118,** 180 $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$, with $(NH)_4FeF_6$ structure type, powder X-ray and neutron diffraction analysis, 115, 197 BaTa₂S₅, superconducting and normal state properties, 116, 392 Ba₈Ta₄Ti₃O₂₄, synthesis and crystal structure, 114, 560 Ba₁₀Ta_{7.04}Ti_{1.2}O₃₀, synthesis and crystal structure, 114, 560 BaTe2, synthesis and characterization, 117, 247 Ba₂TiO₄, with titanate tetrahedra, luminescence, 118, 337 Ba₄Tl₂CO₃O₆, oxycarbonates built up from rock salt layers, 116, 321 BaV₃O₈, hydrothermal synthesis and crystal structure, 117, 407 118, 241 $Ba_xV_8O_{16}$ (x = 1.09(1)), synthesis and crystal structure, 115, 88 $BaVO(PO_4)(H_2PO_4) \cdot H_2O$, synthesis, structure, and magnetism, Ba₈(VO)₆(PO₄)₂(HPO₄)₁₁ · 3H₂O, hydrothermal synthesis and crystal structure, **116**, 77 Ba(VO)₂(SeO₃)₂(HSeO₃)₂, hydrothermal synthesis and crystal structure, **116**, 77 $Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O$, hydrothermal synthesis and crystal structure, 114, 359 BaY₂S₄, structure and properties, 117, 363 Ba₂ZnN₂, synthesis and crystal structure, 119, 375 $Bi_{13}Ba_{2}Fe_{13}O_{66}$, from 2201–0201 intergrowth $Bi_{2}Sr_{4}Fe_{2}O_{10}$, synthesis, 118. 357 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$, with intergrowths of 2201 and 0201 structure, synthesis, **118**, 227 Eu₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, 119, 80 Eu₃Ba₂Mn₂Cu₂O₁₂ intergrowth between 123 and 0201 structures, **115**, 1 Hg_{2-x} M_x Ba₂Pr₂Cu₂O_{10- δ} (M = Cu,Pr), synthesis and crystal structure, **114**, 230 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$, synthesis and characterization, 115, 525 Hg_{1-x}Tl_xSr_{4-y}Ba_yCu₂CO₃O_{7-δ}, modulated superconducting oxides, structural aspects, 120, 332 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2$ (0 < x < 0.4), synthesis and structure, 114, 399 $K_2BaSnTe_4$, synthesis and characterization, 117, 247 $La_4BaCu_5O_{12}$, insulating, prepared by reduction of metallic $La_4BaCu_5O_{13.1}$, analysis, 114, 95 $La_2Ba_2Cu_2Sn_2O_{11}$, high-temperature transport and defect studies, 119, 80 La₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, 119, 80 LaSrFeO₄, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456 $Nd_{1-x}Ba_xTiO_3$ ($0 \le x \le 1$), structure, transport, and magnetic properties, 114, 164 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$, 120, 146 Sr_vBa_{1-v}PrO₃, magnetic properties, 119, 405 Tb₂Ba₂Cu₂Ti₂O₁₁, synthesis and crystal structure, 117, 213 Ti₂(Ba₂Gd)Gd_{2-x}Ce_xCu₂O₁₃, design and synthesis, 114, 57 YBaCoCu_{1-x}Fe_xO₅, magnetic behavior, 115, 514 Y₂Ba₃Cu₃Co₂O₁₂, synthesis by solid state reaction, 115, 407 YBaCuFeO₅, crystal and magnetic structure, 114, 24 YBa₂Cu₃O_y, oxygen nonstoichiometry in, vapor pressure scanning, 119, 62 $YBa_2Cu_3O_{7-\delta}$, films, perovskites as substrates for, synthesis and characterization, **116**, 193 YBa₂Cu₃O_{7-x}, sulfur-doped pellets, copper whisker growth from inside, 117, 151 Y₂BaCuO₅-YBa₂Cu₃O_{6+x}, quantitative X-ray phase analysis and EPR spectra, **116**, 136 Basicity on surface of $Me(OH)_2$ -SiO₂ (Me = Ca,Mg,Sr) mixtures, changes from mechanical activation, 115, 390 Beryllium Na₂BeGeO₄, structure and ionic conductivity, 118, 62 TlBeAsO₄ and TlBePO₄, stereochemical activity of thallium (I) lone pair, 114, 123 Betaine (CH₃)₃NCH₂COO · (COOH)₂ · H₂O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129 2,2'-Bipyridyl stepwise reaction with CuCl₂ · 2H₂O in solid state, 119, 299 Bismuth Ba_{2-x}Bi_xCu₂O₅ (0 $\le x \le 1.5$), synthesis and characterization, **114**, 585 BaBiO₃₋₈ (0 $\le \delta \le 0.5$), analysis, **117**, 55 BaBiO₂Cl, cation ordering, 117, 201 $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$, with $(NH)_4FeF_6$ structure type, powder X-ray and neutron diffraction analysis, 115, 197 $Bi_{13}Ba_{2}Fe_{13}O_{66},\,from\,\,2201-0201\,\,intergrowth\,\,Bi_{2}Sr_{4}Fe_{2}O_{10},\,\textbf{118,}\,357$ BiCaRu₂O_{7-v}, preparation and structure, 119, 254 Bi₂Fe_{4-x}Al_xO₉, structural and magnetic studies, **114**, 199 BiLa₂O_{4.5}, average structure and superstructure, X-ray powder and electron diffraction studies, 116, 72 Bi₂MoO₆, phase transitions, structural changes in, analysis, letter to editor, 119, 210 $Bi_{2-x}Nb_xO_{3+x}$, solid solution, electron diffraction study, 119, 311 Bi₃NF₆, synthesis and structure, 114, 73 Bi_2O_4 , crystal structure with β -Sb₂O₄-type structure, 116, 281 $Bi_3RE_3O_{12}$ (RE = Y,La,Pr-Lu), related phases, synthesis and characterization, 116, 68 Bi₂O₃-CaO, rhombohedral β type solid solutions in, TEM analysis, 118.66 BiOCuSe, powder X-ray and IR studies, 118, 74 $Bi_2O_3-Ln_2O_3$ (Ln = Sm,Eu,Gd,Tb,Dy), low-temperature stable phase, **120**, 32 Bi₂O₃-SrO, rhombohedral β type solid solutions in, TEM analysis, 118, 66 Bi_{1.8}Pb_{0.4}Sr₂Ca₂Cu₃O_{10+δ}, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120 (BiS)_{1.11}NbS₂, layered composite crystal structure, 116, 61 $(BiS)_{1+\delta}(Nb_{1+\epsilon}S_2)_n$, misfit layer structures, analysis by TEM and XRD, 115, 274 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$, with intergrowths of 2201 and 0201 structure, synthesis, 118, 227 BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459 Bi₂Sr₂CaCu₂O₈, chemical diffusion and synthesis kinetics, 116, 314 Bi₂Sr₂CaCu₂O_{8+δ}, phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120 $Bi_{16}Sr_{28}Cu_{17}O_{69+\delta}$, synthesis and characterization, 119, 169 $Bi_2Sr_4Fe_2O_{10}$, 2201-0201 intergrowth, $Bi_{13}Ba_2Fe_{13}O_{66}$ from, synthesis, 118, 357 BiTeX (X = Cl,Br,I), crystal structure, determination by powder X-ray diffraction, 114, 379 Bi₂TeO₅-Bi₂Te₂O₇, phase region, analysis by electron microscopy, 116, 240 Bi₄Te₂O₉Br₂, pyroelectric phase, crystal structure, 116, 406 $Bi_2Ti_4O_{11}$, phase transition, in situ analysis, 119, 281 $M^{1}\text{Bi}(WO_{4})_{2}$ ($M^{1} = \text{Li,Na,K}$), vibrational properties, 117, 177 (Ca_{0.9}Bi_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, **120**, 105 $(Hg_{1-x}Bi_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$, synthesis and characterization, 115, 525 $HgBiSr_7Cu_2SbO_{15}$, double cationic ordering, 116, 53 Mo-Bi-O system, structural modeling, letter to editor, 119, 428 Bonding metal-metal Book reviews role in TiS, VS, TiSe, and VSe monochalcogenides, 114, 346 tetrahedral clusters of GaMo₄S₈-type compounds, analysis, 120, 80 in Zintl phases, analysis by ¹¹⁹Sn Mössbauer spectroscopy, 118, 397 Advances in Solid State Chemistry, Volume 3. C. R. A. Catlow (Ed.), 1993, 114, 300 Advances in the Synthesis and Reactivity of Solids, Volume 2. T. A. Mallouk (Ed.), 1994, 114, 300 Handbook of Molecular Sieves, R. Szostak, 1992, 114, 300 Boron BN, crystalline cubic thin films, hot-filament-assisted electron beam deposition, 118, 99 -carbon-nitrogen system, properties and preparation, 114, 258 CsNbOB₂O₅, synthesis and characterization, 120, 74 CsTaOB₂O₅, synthesis and characterization, 120, 74 Li(H₂O)₄B(OH)₄ · 2H₂O, crystal structure and dehydration process, 115, 549 Mn₃B₇O₁₃Br, high-temperature single crystal X-ray diffraction, 120, 60 Mn₃B₇O₁₃I, high-temperature single crystal X-ray diffraction, 120, 60 Mn₂OBO₃, synthesis, crystal structure, band calculations, and magnetic susceptibility, 114, 311 TiO₂-NaPO₃-Na₂B₄O₇ system, optically nonlinear glasses, Raman scattering and XAFS analysis, 120, 151 ZnO-B2O2-SiO2-P2O5, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, ## Bromine BiTeBr, crystal structure, determination by powder X-ray diffraction, 114, 379 Bi₄Te₂O₉Br₂, pyroelectric phase, crystal structure, 116, 406 $ABBr_4$ (A = Mg,Mn,Zn; B = Li,Na), nonceramic preparation techniques, 117, 34 $Me^{+}Br - CuX_2 - H_2O$ ($Me^{+} = K^{+}, NH_4^{+}Rb^{+}, Cs^{+}$), double salts, 114, 385 CdBr2, solid state reactions with 8-hydroxyquinoline, 117, 416 CsErTa₆Br₁₈, crystal structure, 118, 274 CsGeBr3, pressure-induced phase transition, analysis by X-ray diffraction and Raman spectroscopy, 118, 20 InCdBr₃, synthesis, crystal structure, and electronic structure, 116, 45 Mn₃B₇O₁₃Br, high-temperature single crystal X-ray diffraction, **120**, 60 Nb₃SBr₇, synthesis, crystal structure, and magnetic susceptibility, **120.** 311 $M_2RETa_6Br_{18}$, $MRETa_6Br_{18}$, and $RETa_6Br_{18}$ (M = monovalent cation; RE = rare earth), crystal structure, 118, 274 M_2RE Ta₆Br₁₅O₃ (M = monovalent cation; RE = rare earths), synthesis and crystal structure, 120, 43 \mathbf{C} # Cadmium Ca_{10-x-v}Cd_xPb_v(PO₄)₆(OH)₂, solid solutions, analysis by X-ray and IR spectroscopy, 116, 8 CdX_2 (X = Cl,Br,I), solid state reactions with 8-hydroxyquinoline, **117**, 416 CdCr₂Se₄, lattice dynamics, 118, 43 $CdGa_2X_4$ (X = S,Se), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442 Cd_{2-x}GeO_{4-x-3y}N_{2y}, preparation and characterization, 119, 304 CdS particles, preparation in silica glasses
by sol-gel method, 118, 1 Co_rCd_{1-r}In₂S₄, spinel solid solutions, structural, magnetic, and optical properties, 114, 524 InCdBr₃, synthesis, crystal structure, and electronic structure, 116, 45 Slater functions, formulation by distance between subspaces, 116, 275 Calcium $(1 - x)Ag_2SO_4$ ~(x)CaSO₄ (x = 0.01-0.20), defect chemistry, 116, 232 BiCaRu₂O_{7-y}, preparation and structure, 119, 254 Bi_2O_3 -CaO, rhombohedral β type solid solutions in, TEM analysis, 118,66 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$, phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120 Bi₂Sr₂CaCu₂O₈, chemical diffusion and synthesis kinetics, 116, 314 Bi₂Sr₂CaCu₂O_{8+δ}, phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120 BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459 Ca₄Al₆O₁₆S, crystal structure, 119, 1 Ca_{10-x-y}Cd_xPb_y(PO₄)₆(OH)₂, solid solutions, analysis by X-ray and IR spectroscopy, 116, 8 Ca₃CoN₃, preparation, crystal structure, electrical properties, and magnetic properties, 119, 161 CaCu_{0.15}Ga_{3.85}, crystal structure, analysis by powder X-ray diffraction data, 114, 342 CaCuO2-SrCuO2 infinite-layer thin film heterostructures, growth monitored by RHEED, 114, 190 CaFeTi₂O₆, high-pressure synthesis and crystal structure, 114, 277 Ca₃HfSi₂O₉, structure determination from powder diffraction, 115, 464 CaMg₂Al₁₆O₂₇ phase relationships in CaO-Al₂O₃-MgO system, 120, 358 structure refinement, 120, 364 $Ca_2Mg_2Al_{28}O_{46}$ phase relationships in CaO-Al₂O₃-MgO system, 120, 358 structure refinement, 120, 364 $(Ca_{0.9}M_{0.1})MnO_3$ (M = Y,La,Ce,Sm,In,Sn,Sb,Pb,Bi), electrical transport properties and high-temperature thermoelectric performance, **120,** 105 $Ln_{1-x}Ca_xMnO_3$ (Ln = rare earths), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204 CaO-Al₂O₃-MgO system, Al-rich part, phase relationships, 120, 358 Ca(OH)2-SiO2, mixtures, surface changes in basicity and species, role of mechanical activation, 115, 390 Ca₁₀(PO₄)₆(OH)₂, induced radiation damage, analysis by TEM, 116, $Ca_xSn_xGa_{8-2x}O_{12}$ (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of Sn4+ on, 118, 6 γ-CaSO₄, CaSO₄ · 0.5H₂O, and CaSO₄ · 0.6H₂O, crystal structure, determination by powder diffraction methods, 117, 165 $Ca_{1-x}Sr_xNiN$ ($0 \le x \le 0.5$), solid solutions, preparation, crystal structure, and properties, 115, 353 (Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372 Ca₄Tl₂CO₃O₆, oxycarbonates built up from rock salt layers, 116, 321 CaTl₂O₄ and Ca₂Tl₂O₆, characterization as chemical twins of rock salt structure, 114, 428 Ca₃Tl₂O₆, synthesis and crystal structure, 115, 508 Ca₃Tl₄O₉, isolation, 119, 134 CaY₂S₄, structure and properties, 117, 363 Ca₅Y₄S₁₁, NaCl-type structure, Rietveld refinement, 119, 45 Ca₃ZrSi₂O₉, structure determination from powder diffraction, 115, 464 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, 114, 369 La_{1-x}Ca_xCrO_{3-δ}, chemical diffusion, 115, 152 La_{1-x}Ca_xMnO₃ bulk samples, giant magnetoresistance, letter to editor, 114, 297 LaSrFeO₄, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456 -lead, hydroxyapatite, cation effects in oxidative coupling of methane, 114, 138 Li₂Ca₂Si₅O₁₃, crystal structure determination, 114, 512 $NaCa_2M_2^{2+}$ (AsO₄), ($M^{2+} = Mg,Ni,Co$), structure, 118, 267 Nd_{1-r}Ca_xFeO_{3-v}, nonstoichiometry and physical properties, analysis, $Nd_{1-x}Ca_xTiO_3$ ($0 \le x \le 1$), structure, transport, and magnetic properties, 114, 164 Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO₃₋₈, effects of spectacular giant magnetoresistance, Sr₂CaIrO₆, preparation and stabilization by high oxygen pressure, 115, 447 YCa₂SbFe₄O₁₂, magnetic ordering, 115, 435 Calorimetry differential scanning, $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18}\cdot 2H_2O$, 114, 42 Capacitance-voltage curve MOS capacitors passivated by fluoride-containing ZnO-B₂O₂-SiO₂-P₂O₅ glasses, OH-related capacitance-voltage recovery effect in, 118, 212 Capacitors MOS, passivation by fluoride-containing ZnO-B₂O₂-SiO₂-P₂O₅ glasses, OH-related capacitance-voltage recovery effect in, **118**, 212 Carbon Al₂₈O₂₁C₆N₆, diamond-related compound in system Al₂O₃-Al₄C₃-AlN, identification, **120**, 211 $Al_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, synthesis and crystal structure, 120, 197 BaEu(CO₃)₂, optical properties, correlation to crystallographic structure, **116**, 286 [Ba₂(H₂O)₁₀][Fe(CN)₅NO]₂3H₂O], hydrogen-bonding system, **114**, 102 Ba₄LiCuO₄(CO₃)₂, electronic and vibrational spectra, **119**, 359 Ba₄NaCuO₄(CO₃)₂, electronic and vibrational spectra, 119, 359 CCl₄, reaction with TT-Phase NbO, kinetic mechanism, **117**, 379 (CH₃)₃NCH₂COO · (COOH)₂ · H₂O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129 [n-C₀H₁₀NH₃]₂CuCl₄, characterization by FTIR, 117, 97 $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$, crystal structure, determination from powder data, 117, 103 CH₃NH₃SnI₃, transport, optical, and magnetic properties, 114, 159 $(C_{18}H_{30}N_3)_2\cdot[Si_8O_{18}(OH)_2]\cdot 41H_2O,$ X-ray diffraction and NMR analysis, 120, 231 Co-Li₂CO₃, phase composition, microstructure, and sintering, erratum, 116, 15; 117, 433 Cu(C₄H₅N₃)₂Cl₂, synthesis and characterization, 117, 333 $Cu^{11}(1,4\cdot C_4H_4N_2)(C_4O_4)(OH_2)_4$, synthesis and structure determination with silica gels, 117, 256 CuSr(HCOO)₄, crystal structure and thermal decomposition, 117, 145 decomposition from CO₂, analysis with Ni_{0.39}Fe_{2.61}O₄₋₆, X-ray diffraction and Mössbauer studies, 120, 64 GdRuC2, with filled NiAs structure, 118, 158 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$, modulated superconducting oxides, structural aspects, **120**, 332 $LaMn_{11}C_{2-x}$, preparation, structure refinement, and properties, 114, 66 $La_2O_2CN_2$, synthesis and crystal structure, 114, 592 $Na_3La_2(CO_3)_4F$: Eu^{3+} , optical properties, correlation to crystallographic structure, 116, 286 $N(CH_3)_4H_2PO_4 \cdot H_2O$, FT-IR and polarized Raman spectra, 120, 343 [$NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3$] $_2P_6O_{18} \cdot 2H_2O$, structural, DSC, and IR analysis, 114, 42 -nitrogen polymers, high-pressure synthesis, 117, 229 $(M^{2+})_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{2+} = Cu,Zn,Co; M^{3+} = Cr)$, characterization, 119, 246 ScCrC₂, preparation, properties, and crystal structure, 119, 324 $Si_{1-x}C_x$: H alloys, structural properties and chemical ordering, 117, 427 $Sn_4S_9[(C_3H_7)_4N]_2$, preparation and structural characterization, 114, 506 $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH]$, preparation and structural characterization, **114**, 506 (Sr[Fe(CN)₅NO] · 4H₂O), crystal structure, determination by X-ray diffraction, 120, 1 Sr₅Mn₄CO₃O₁₀, synthesis and structure, 120, 279 Sr₂RuO₄ · 0.25 CO₂, synthesis, application in synthesis of Sr₃Ru₂O₇, 116. 141 $A_4\text{Tl}_2\text{CO}_3\text{O}_6$ ($A = \text{Ca}_6\text{Sr},\text{Ba}$), oxycarbonates built up from rock salt layers, 116, 321 $Tm_2Fe_2Si_2C$, preparation, structure refinement, and properties, **114**, 66 $U_2Fe_{17-x}M_xC_y$ (M = Al,Si, and Ge), magnetic properties, **115**, 13 VC, synthesis by temperature programmed reduction, **120**, 320 $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}]$, synthesis, crystal structure, and structural correlations with V_2O_5 and other vanadyl compounds, 120, 137 VO(HCO₂)₂ · H₂O, compounds based on double layers in, synthesis, 117, 136 $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$, synthesis and stability, 117, 275 Cations positive mixed effect on Ag₂SO₄-Tl₂SO₄, 114, 271 Ceramics mixed valent nickel and manganese oxides, 116, 355 and oxides, effects of ultrasound, macro- and microscopic analysis, 115, 532 Cerium BaCe_vPr_{1-v}O₃, magnetic properties, 119, 405 (Ca_{0.9}Ce_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, **120**, 105 Ce⁴⁺, doped La_{1.2}Tb_{0.8}CuO_{4+δ}, derivatives, structural and conducting properties, **115**, 332 CeAgSb₂ with HfCuSi₂-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 CeT_2Al_{20} (T = Ti,Mo,W), with $CeCr_2Al_{20}$ -type structure, 114, 337 $Ce_2Ba_2Cu_2Ti_2O_{11-\delta}$, synthesis, structure, and superconductivity, 119, CeCr₂Al₂₀, related structure, AT_2 Al₂₀ (A = La-Lu,U; T = Ti,Ta,Mo,W) ternary aluminides with, **114**, 337 CeCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 Ln_{2-x}Ce_xCuO₄, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491 $Ce_{0.818}Gd_{0.182}O_{1,909-y}$, nonstoichiometric 10 mol%, phase diagram, 117, 392 CeK₂(NO₃)₆, double valence change for cerium during thermal decomposition, letter to editor, **115**, 295 CeNbO₄, relationship between covalence and displacive phase transition temperature, 116, 28 Ce₂O₃, cation array structure, 119, 131 $(1-x)CeO_2 \cdot xYO_{1.5}$, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290 CeO₂-δYO_{21.5}, single crystal X-ray study, 115, 23 $CePd_{2-x}As_2$, with $ThCr_2Si_2$ structure, structure refinement, 115, 37 $CePd_3As_2$ arsenides, 115, 37 Ce₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 $MCeTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 CeTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure. **120.** 43 CeVO₃, magnetic and transport properties, 119, 24 $Cs_3CeCl_6 \cdot 3H_2O$, thermal dehydration and crystal structure, **116**, 329 $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}La$, $CuO_{4+\delta}$, synthesis and characterization, **116**, 347 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$, **120**, 146 $Nd_{2-x}Ce_rCuO_4$, FT-IR skeletal study, **119**, 36 Ti₂(Ba₂Gd)Gd_{2-x}Ce_xCu₂O₁₃, design and synthesis, 114,
57 Cesium [Cs*(15-crown-5)(18-crown-6)e⁻]₆ · (18-crown-6), properties, 117, 309 Cs₂[AuCl₂][AuCl₄], local electronic anisotropy, probing with anomalous scattering diffraction, 118, 383 Cs₃LnCl₆ · 3H₂O (Ln = La-Nd), thermal dehydration and crystal structure, **116**, 329 CsCl/TbCl₃ systems, ternary chlorides in, analysis, 115, 484 $CsX - CuX_2 - H_2O(X^- = Cl^-.Br^-)$, double salts, 114, 385 CsErTa₆Br₁₈, crystal structure, 118, 274 CsGeBr₃, pressure-induced phase transition, analysis by X-ray diffraction and Raman spectroscopy, 118, 20 CsHSO₄ phase transitions, 117, 412 thermally induced phase transitions, 117, 414 Cs₉Mo₉Al₃P₁₁O₅₉ with tunnel structure, isolation, 114, 451 CsMo₂O₃(PO₄)₂, mixed valent monophosphate with layer structure, 116, 87 CsNbOB₂O₅, synthesis and characterization, 120, 74 Cs₄Sb₄O₈(Si_{4(1-x)}Ge_{4x}O₁₂), solid solution, electron and X-ray diffraction and ²⁹Si MAS NMR analysis, **114**, 528 $CsRETa_6Br_{18}$ (RE = La-Lu,Y), crystal structure, 118, 274 $Cs_2RETa_6Br_{18}$ (RE = Eu, Yb), crystal structure, 118, 274 CsTaOB₂O₅, synthesis and characterization, 120, 74 Cs(TiAs)O₅, crystal structure, 120, 299 Cs(TiP)O₅, crystal structure, 120, 299 α - and β -CsTi₃P₅O₁₉, synthesis and crystal structure, 115, 120 Cs₂V₄O₉, synthesis, crystal structure, and magnetic properties, 115, 174 Cs₂(WO₃)₃SeO₃, synthesis, crystal structure and properties, 120, 112 Cs₂ZrCl₆, green-to-blue up-conversion emission from U⁴⁺ ion in, effect of temperature, 116, 113 YbI₂-CsI, phase diagrams, measurement and calculation, 114, 146 Channel networks two-dimensional, in KNB₅GeO₁₆ · 2H₂O, 115, 373 Chemical ordering $Si_{1-x}C_x$: H alloys, **117**, 427 Chemical reactivity $TIV_{5-y}Fe_yS_8$ (y = 0.5-1.5), 119, 147 Chevkinites Pr₄V₅Si₄O₂₂ with related structure, 116, 211 Chevrel phases M_x Mo₆S₈(M = Sn,Co,Ni,Pb,La,Ho), and tungsten analogs, amorphous precursors for low-temperature preparation, 117, 269 Chlorine BaBiO₂Cl, cation ordering, 117, 201 $Ba_2M_2F_7Cl\ (M=Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$, synthesis, magnetic behavior, and structural study, **115**, 98 $Ba_2MM'F_7Cl(M,M'=Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$, synthesis, magnetic behavior, and structural study, **115**, 98 BiTeCl, crystal structure, determination by powder X-ray diffraction, 114, 379 CCl₄, reaction with TT-Phase NbO, kinetic mechanism, 117, 379 CdCl₂, solid state reactions with 8-hydroxyquinoline, 117, 416 [n-C₉H₁₉NH₃]₂CuCl₄, characterization by FTIR, 117, 97 $ABCl_4$ (A = Mg,Mn,Zn; B = Li,Na), nonceramic preparation techniques, 117, 34 $Me^+Cl - CuX_2 - H_2O$ ($Me^+ = K^+, NH_4^+Rb^+, Cs^+$), double salts, 114, 385 $ACI/TbCl_3$ (A = K,Rb,Cs), ternary chlorides in, analysis, 115, 484 Cs₂[AuCl₂][AuCl₄], local electronic anisotropy, probing with anomalous scattering diffraction, 118, 383 Cs₃LnCl₆ · 3H₂O (Ln = La-Nd), thermal dehydration and crystal structure, 116, 329 Cs₂ZrCl₆, green-to-blue up-conversion emission from U⁴⁺ ion in, effect of temperature, 116, 113 Cu(C₄H₅N₃)₂Cl₂, synthesis and characterization, 117, 333 CuCl₂ · 2H₂O, stepwise reaction with 2,2'-bipyridyl in solid state, 119, 299 MgO-MgCl₂-H₂O, chemical reactions, analysis by time-resolved synchrotron X-ray powder diffraction, **114**, 556 NaCl, related U, Np, and Pu compounds, thermodynamic and magnetic properties, 115, 66 NaClO₃, high-pressure behavior, 118, 378 NaSn₂Cl₅, synthesis and crystal structure, 115, 158 Chromium $Ba_3Cr_2MO_9$ (M = Mo, W), structure and magnetic properties, 120, 238 $CdCr_2Se_4$, lattice dynamics, 118, 43 $CeCr_2Al_{20}$, AT_2Al_{20} (A = rare earths,U; T = Ti,Ta,Mo,W) ternary aluminides with, 114, 337 CoCr₂S₄, lattice dynamics, 118, 43 (Cr_{1-x}Fe_x)₃Te₄, magnetic properties, **120**, 49 CrO₂-CrOOH system, CrO₂ from decomposition, interconversion in, 119, 13 $(M^{2+})_6 Cr_2(OH)_{16}CO_3 \cdot 4H_2O \ (M^{2+} = Cu,Zn,Co)$, characterization, 119, 246 CrOOH-CrO₂ system, CrO₂ from decomposition, interconversion in, 119, 13 Cr₂S₃-CuS, copper-chromium sulfide spinel and thermal decomposition reactions in, 117, 122 Cr₂Sn₃Se₇, structural determination and magnetic properties, 115, $M^{I}Cr(WO_4)_2$ ($M^{I} = Li,Na,K$), vibrational properties, 117, 177 -Cu-Al spinel oxide semiconductors, compensated, analysis, 120, 388 CuCrP₂S₆, copper disorder, stacking distortions, and magnetic ordering, 116, 208 CuCr₂S₄, spinel formation, thermal decomposition reactions in crystalline mixtures, 117, 122 HgCr₂Se₄, lattice dynamics, 118, 43 induction of structural changes in TiO₂, analysis by X-ray diffraction, 114, 364 $K_{3/2}Cr_{1/2}Te_{3/2}O_6\cdot 0.5H_2O,$ electrical properties and structural characterization, $116,\,290$ $La_{1-x}Ca_xCrO_{3-\delta}$, chemical diffusion, 115, 152 LaCo_{1-t}Cr_tO₃, reduction and reoxidation properties, 119, 271 LaCrO₃, oxygen ion migration, 118, 125 $(La_{1-x}Nd_x)CrO_3$ $(0 \le x \le 1.0)$, electrical properties and crystal structure, relationship, **114**, 236 Li_{0.5}(FeCr)_xGa_{2.5-2x}O₄, tetrahedral 3d⁵ and 3d⁵ or 3d³ octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, 120, 244 Mn₃Al_{2-x}Cr_xGe₃O₁₂, X-ray absorption spectroscopic and magnetic analysis, **118**, 261 Na_xCr_xTi_{8-x}O₁₆, tunnel structure analysis for stability and sodium ion transport, **116**, 296 $Nd(Cr_{1-x}Mn_x)O_3$ ($0 \le x \le 0.6$), cation-anion-cation overlap and electrical properties, relationship, 118, 367 Ni-Al-Cr, synthesis and characterization, 118, 285 Pb₄(PO₄)₂CrO₄, phase transformation, 116, 179 ScCrC₂, preparation, properties, and crystal structure, 119, 324 $Sn_{1-p}Cr_2S_{4-p}$ channel-type composite crystal, X-ray and electron diffraction study, 115, 7 Sr₂Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xTe_{0.2}Sb_{0.8}O₆, mixed valent oxide ceramic, superconducting properties, 116, 355 $Sr_2Zn_{0.2}Ga_{0.8}$ - $_xMn(Cr)_xW_{0.2}Ta_{0.8}O_6$, mixed valent oxide ceramic, superconducting properties, 116, 355 ThCr₂Si₂, CePd_{2-x}As₂ with related structure, 115, 37 $[Zn_2Cr(OH)_6]X \cdot nH_2O$, where $X^- = 1/2 \text{ mal}^{2-}$, cis- $[Cr(mal)_2(H_2O)_2]^-$, and $1/3[Cr(mal)_3]^{3-}$ (mal = malonate), malonate intercalation into, 119, 331 ZnCr₂S₄, lattice dynamics, 118, 43 ZnCr₂Se₄, lattice dynamics, 118, 43 Citric acid mediated synthesis of β -Co(OH)₂, 114, 550 Cobal $Ba_2CoM'F_7Cl\ (M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+})$, synthesis, magnetic behavior, and structural study, **115**, 98 Ba₂Co₂F₇Cl, synthesis, magnetic behavior, and structural study, 115, 98 BaCoO_{3-v}, HREM study, 120, 327 BaFe_{12-2x}Co_xTi_xO₁₉ crystallite size and shape, determination by X-ray line broadening analysis, 114, 534 samples with composition range 0 < x < 1, synthesis for magnetic recording, 115, 347 BaFe_{12-2x}Ir_xCo_xO₁₉ ($x \sim 0.85$ and $x \sim 0.50$), magnetic properties, cationic distribution in relation to, **120**, 17 BaLaCoRuO₆, structural and electronic properties, 114, 174 -boron-nitrogen system, properties and preparation, 114, 258 Ca₃CoN₃, preparation, crystal structure, electrical properties, and magnetic properties, 119, 161 CoAs₂O₆, structural and magnetic properties, 118, 402 Co₂As₂O₇, magnetic properties and structures, 115, 229 Co_xCd_{1-x}In₂S₄, spinel solid solutions, structural, magnetic, and optical properties, 114, 524 CoCr₂S₄, lattice dynamics, 118, 43 $\text{Co}_x\text{Cu}_{1-x}\text{Fe}_2\text{O}_4$ ($0 \le x < 0.3$), thermal behavior and magnetic properties, *erratum*, 117, 64; 117, 433 Co-Li₂CO₃, phase composition, microstructure, and sintering, *erratum*, **116**, 15; **117**, 433 Co_xMo₆S₈, amorphous precursors for low-temperature preparation, 117, 269 Ln₂MCo₂O₇ (Ln = Sm,Gd; M = Sr,Ba), synthetic, structural, electrical, and magnetic properties, **114**, 286 β-Co(OH)₂, organic additive-mediated, synthesis, 114, 550 $Co_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{3+} = Cr)$, characterization, 119, 246 $Co_2(OH)PO_4$, structure-directing effect of organic additives, 114, 151 Co(ReO₄)₂ · 4H₂O, preparation and crystal structure determination, 115, 255 AA'CoRuO₆ (AA' = Sr,Ba,La), structural and electronic properties, 114. 174 CoSeO₃-II, crystal structure, 120, 182 CoU₂O₆, antiferromagnetic ordering, 114, 595 Co_xW₆S₈, amorphous precursors for low-temperature preparation, 117, 269 LaCo_{1-t}Cr_tO₃, reduction and reoxidation properties, 119, 271 LaCo_{0.2}Fe_{0.8}O₃₋₆, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, **118**, 117 La_2CoIrO_6 , structure and magnetic properties, 116, 199 $LaCoO_3$ magnetic and transport properties, 116, 224 oxygen ion migration, 118, 125 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$ (0 < $x \le 0.50$), 118, 323 $La_{0.2}Sr_{0.8}Cu_{0.4}Co_{0.6}O_{3-y}$, synthesis, 119, 260 LiCoO2, synthesis and thermal stability, 117, 1 NaCa₂Co₂²⁺ (AsO₄)₃, structure, 118, 267 NaCo₂(SeO₃)₂(OH), polarized electronic absorption spectra and crystal structure, 115, 360 NiCo₂O₄, preparation by sol-gel process, **116**, 157 PbCo₃(P₂O₇)₂, crystal structure, 118, 202 SmCo₅, and Sm₂Co₁₇, and Sm₂Co₇, binary magnetic phases competing for stability, leapfrog thermodynamics, **116**, 92 $Sn_{1-x}Co_xO_y$ (0 < $x \le 0.15$), thin films, structural models, 116, 256 $SrCoO_{3-\delta}$, electronic states, effects of oxygen, 119, 76 $Ln_{1-x}Sr_xCoO_{3-\delta}(Ln = La,Pr,Nd)$ solid solutions, oxide ion conduction, **120**, 128 $Sr_3Co_2O_{7-y}$ (0.94 $\leq y \leq$ 1.22), structure and oxygen stoichiometry, 115, 499 $U_3Co_4Ge_7$, crystal structure and magnetic properties, 115, 247 $YBaCoCu_{1-x}Fe_xO_5$, magnetic behavior, 115, 514 Y₂Ba₃Cu₃Co₂O₁₂, synthesis by solid state reaction, **115**, 407 Combustion high-temperature, $Ba-\beta$ - Al_2O_3 , materials, crystal structure, **114**, 326 Computer applications # **POWSIM** in crystal structure determination of 2(C₆H₅NH₃) · Mo₃O₁₀ · 4H₂O from powder data, 117, 103 direct method powder diffraction package, in analysis of K_2Mo_2 $O_{10} \cdot 3H_2O$, 115, 225 # Conductivity
Ag4Hf3S8, 115, 112 ionic, see Ionic conductivity #### Copper $Ba_{2-x}Bi_xCu_2O_5$ (0 $\le x \le 1.5$), synthesis and characterization, **114**, 585 BaCuAs₂O₇, synthesis and structure, **118**, 280 BaCuO_{2+x}, structural, magnetic, and EPR studies, 119, 50 $RBa_2Cu_3O_{7-y}$ (R = Ln or Y), FT-IR skeletal study, 119, 36 $Ln_2Ba_2CuPtO_8$ (Ln = Ho-Lu), synthesis and characterization, 120, 316 $BaCu_2S_2$, electrical and magnetic properties, 117, 73 α-BaCu₄S₃, electrical and magnetic properties, 117, 73 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln=La-Tb), synthesis, structure, and superconductivity, **119**, 224 Ba₄LiCuO₄(CO₃)₂, electronic and vibrational spectra, 119, 359 Ba₄NaCuO₄(CO₃)₂, electronic and vibrational spectra, 119, 359 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120 BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459 Bi₂Sr₂CaCu₂O₈, chemical diffusion and synthesis kinetics, 116, 314 Bi₂Sr₂CaCu₂O_{8+δ}, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120 $Bi_{16}Sr_{28}Cu_{17}O_{69+\delta}$, synthesis and characterization, 119, 169 CaCu_{0.15}Ga_{3.85}, crystal structure, analysis by powder X-ray diffraction data, 114, 342 CaCuO₂-SrCuO₂ infinite-layer thin film heterostructures, growth monitored by RHEED, 114, 190 Ln_{2-x}Ce_xCuO₄, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491 [n-C₉H₁₉NH₃]₂CuCl₄, characterization by FTIR, 117, 97 $Co_x Cu_{1-x} Fe_2 O_4$ ($0 \le x < 0.3$), thermal behavior and magnetic properties, *erratum*, **117**, 64; **117**, 433 -Cr-Al spinel oxide semiconductors, compensated, analysis, **120**, 388 Cu, disorder in CuCrP₂S₆, **116**, 208 Cu(II), incorporation into α - and β -AlF₃ · 3H₂O, analysis by ESR, 116, 249 ACuAs₂ (A = Y,La-Nd,Sm,Gd-Lu), with HfCuSi₂-type structure, preparation, 115, 305 Cu(C₄H₅N₃)₂Cl₂, synthesis and characterization, 117, 333 $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$, synthesis and structure determination with silica gels, 117, 256 CuCl₂ · 2H₂O, stepwise reaction with 2,2'-bipyridyl in solid state, 119, 299 CuCrP₂S₆, copper disorder, stacking distortions, and magnetic ordering, 116, 208 CuCr₂S₄, spinel formation, thermal decomposition reactions in crystalline mixtures, 117, 122 $Me^{+}X-CuX_{2}-H_{2}O$ ($Me^{+}=K^{+},NH_{4}^{+}Rb^{+},Cs^{+};$ $X^{-}=Cl^{-},Br^{-}),$ double salts, 114, 385 CuNb₂O₆, lithium insertion characteristics, 118, 193 CuNd₂Ge₂O₈, crystal structure, growth, and magnetic and spectroscopic properties, 120, 254 R₂Cu₂O₅ (R = Yb,Tm,Er,Y,Ho), structural characterization by neutron diffraction, 115, 324 $Cu_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{3+} = Cr)$, characterization, 119, 246 $Cu_2(OH)_3NO_3$, magnetic behavior and exchange coupling, single crystal study, 116, 1 Cu_{0.5}(OH)_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, 117, 157 CuS, Cu_{1.8}S, Cu_{1.8}S, and Cu₂S films, optical and electrical properties, 114, 469 ACu_7S_4 (A = TI,K,Rb), physical properties and successive phase transitions. 115, 379 CuSb₂O₆, long-range magnetic order, confirmation, 118, 199 CuS-Cr₂S₃, copper-chromium sulfide spinel and thermal decomposition reactions in, 117, 122 CuSr(HCOO)₄, crystal structure and thermal decomposition, 117, 145 $CuS_{1-x}Se_x$ ($0 \le x \le 1$), phase transition, determination by X-ray diffractometry, 118, 176 Cu_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, 117, 157 Cu-Zn coprecipitate, effect of incorporation of Al⁺³ on structure, 115, 204 Cu_xZn_{1-x}Nb₂O₆, structural relations, **115**, 476 Eu₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, 119, 80 Eu₃Ba₂Mn₂Cu₂O₁₂ intergrowth between 123 and 0201 structures, 115, 1 HfCuSi₂, ternary arsenides and antimonides with related structure, preparation, 115, 305 $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$, synthesis and crystal structure, **114**, 230 $HgBiSr_7Cu_2SbO_{15}$, double cationic ordering, **116**, 53 $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}La_rCuO_{4+\delta}$, synthesis and characterization, **116**, 347 $Hg_{2-x}Cu_xBa_2Pr_2Cu_2O_{10-\delta}$ (M = Cu,Pr), synthesis and crystal structure, **114**, 230 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, 114, 369 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$, synthesis and characterization, 115, 525 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$, modulated superconducting oxides, structural aspects, 120, 332 HoSr₂Cu_{2.7}Mo_{0.3}O_{7.54}, synthesis and crystal structure, 119, 115 La₄BaCu₅O₁₂₁, insulating, prepared by reduction of metallic La₄Ba Cu₅O₁₃₁, analysis, 114, 95 $La_2Ba_2Cu_2Sn_2O_{11}$, high-temperature transport and defect studies, 119, 80 $La_2Ba_2Cu_2Ti_2O_{11}$, high-temperature transport and defect studies, 119, 80 La₅Cu₅O_{13.35}, crystal structure, determination by high-resolution synchrotron X-ray diffraction, **118**, 170 La₂CuO₄-Nd₂CuO₄, superconductivity, after treatment under oxidizing conditions, 115, 540 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-y}$ (M = Co,Fe), synthesis, 119, 260 La_{1-x}Sr_xCuO₃, perovskite lattice, mixed valence Cu(III)/Cu(IV) in, stabilization under high oxygen pressure, **114**, 88 La_{6.4}Sr_{1.6}Cu₈O₂₀, ordered substitution of iron for copper, 115, 469 $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta}$, oxygen content and structure relationship, 115, 490 $La_{1.2}Tb_{0.8}CuO_{4+\delta}$, with T^* structure, conducting properties and structure, 115, 332 $LiCuO_2$, symmetry, analysis by X-ray and neutron diffraction measurements, 114, 590 α - and β -Na₂CuP₂O₇, crystal structure, 120, 23 Na₂Cu₂ZrS₄, synthesis and crystal structure, 117, 30 Na₄H[Cu(H₂TeO₆)₂] · 17H₂O, crystal structure, electronic spectra, and XPS, 115, 208 Na₄K[Cu(HIO₆)₂] · 12H₂O, crystal structure, electronic spectra, and XPS, 115, 208 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$, 120, 146 Nd_{2-x}Ce_xCuO₄, FT-IR skeletal study, 119, 36 Nd₂CuO₄-Nd₂CuO₄, superconductivity, after treatment under oxidizing conditions, 115, 540 Nd₂O₃-Pr₆O₁₁-CuO, phase relations, 115, 291 MOCuSe (M = Bi,Gd,Dy), powder X-ray and IR studies, 118, 74 Pb₂Cu(II)₇(AsO₄)₆, crystal structure, topological relationship to Pb₂Cu(I)₂Cu(II)₆(AsO₄)₆, 114, 413 Pb₂Cu(I)₂Cu(II)₆(AsO₄)₆, crystal structure, topological relationship to Pb₂Cu(II)₇(AsO₄)₆, **114**, 413 Pr_{2-y}Sr_yCuO₄₋₈, effect of oxygen and strontium content, 116, 385 RbTaCu₂Te₄, synthesis and characterization, 117, 247 $Sm_{1-x}SrSr_xCuO_{2.5-x/2+\delta}$, PLD thin films, perovskite phases and phasoids, 116, 37 Sm₂Sr₆Cu₈O₁₇₊₈ perovskite films, analysis by HREM, 116, 300 Sr₃CuIrO₆, structure and magnetic properties, 117, 300 SrCuO₂ orthorhombic crystals, growth and structural refinement, 114, 289 SrCuO₂-CaCuO₂ infinite-layer thin film heterostructures, growth monitored by RHEED, 114, 190 TaCu₃Te₄, synthesis and characterization, 117, 247 Tb₂Ba₂Cu₂Ti₂O₁₁, synthesis and crystal structure, **117**, 213 Ti₂(Ba₂Gd)Gd_{2-x}Ce_xCu₂O₁₃, design and synthesis, 114, 57 whisker growth from inside YBa₂Cu₃O_{7-x} sulfur-doped pellets, 117, 151 YBaCoCu_{1-x}Fe_xO₅, magnetic behavior, 115, 514 Y2Ba3Cu3Co2O12, synthesis by solid state reaction, 115, 407 YBaCuFeO₅, crystal and magnetic structure, 114, 24 Y₂BaCuO₅-YBa₂Cu₃O_{6+x}, quantitative X-ray phase analysis and EPR spectra, 116, 136 YBa₂Cu₃O_{7-δ} films, perovskites as substrates for, synthesis and characterization, **116**, 193 YBa₂Cu₃O_{7-x}, sulfur-doped pellets, copper whisker growth from inside, 117, 151 Y₂BaCuO₅, quantitative X-ray phase analysis and EPR spectra, 116, YBa₂Cu₃O_y, oxygen nonstoichiometry in, vapor pressure scanning, 119, 62 $YCuO_2$ and $Y_2Cu_2O_5$ phases in Y_2O_3 -Cu-CuO system, analysis by oxygen coulometry, 114, 420 $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$, retarded Pr f hybridization and T_c suppression, 118, 215 (Zn_xCu_{1-x})(OH)_{2-y}(NO₃)_y·zH₂O, cation distribution and coordination chemistry, structural and spectroscopic study, **118**, 303 Coupling exchange, $Cu_2(OH)_3NO_3$, measurements as function of magnitude and orientation of magnetic field, 116, 1 Covalenc RAO_4 and LiAO₃ (R = rare earth elements; A = Nb,Ta), relationship with displacive phase transition temperature, 116, 28 Crown ethers [Cs⁺(15-crown-5)(18-crown-6)e⁻]₆ · (18-crown-6), properties, **117**, 309 Crystal chemistry ≈SbVO₄, 116, 369 TiS, VS, TiSe, and VSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346 Crystal field effect on rare-earth (Pr,Nd,Eu) mixed oxide, magnetic susceptibility, 114, 52 Crystal field potentials multipole expansions, ReB_q^k -Im B_q^k , parameter ratio quality, 115, 92 Crystal growth CuNd₂Ge₂O₈, 120, 254 Crystals mixed, see Mixed crystals Crystal structure, see also Tunnel structure Ag₄Hf₃S₈, 115, 112 Ag₂MnGeTe₄, symmetry, 115, 192 $AgMn_3(PO_4)(HPO_4)_2$, 117, 206 $REAgSb_2$ (RE = Y,La-Nd,Sm,Gd-Tm), 115, 441 Ag_{3.8}Sn₃S₈, 116, 409 $AgV_2(PO_4)P_2O_7$, 115, 521 Ag₄Zr₃S₈, 116, 409 $Al_{28}O_{21}C_6N_6$, diamond-related compound in system $Al_2O_3-Al_4C_3-AlN$, identification, **120**, 211 $Al_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, **120**, 197 AAs_2O_6 (A = Mn,Co,Ni), 118, 402 M_2 As₂O₇ (M = Ni,Co,Mn), 115, 229 AuNi₂Sn₄, 119, 142 MAu_2O_4 (M = Sr,Ba), 118, 247 Ba-β-Al₂O₃, 114, 326 | $Ba_{2-x}Bi_xCu_2O_5$ (0 $\le x \le 1.5$), 114, 585 | Ca ₃ ZrSi ₂ O ₉ , 115, 464 | |--|---| | BaBiO _{3-δ} system (0 $\leq \delta \leq$ 0.5), 117, 55 | CdCr ₂ Se ₄ , 118, 43 | | BaCoO _{3-y} , 120, 327 | $Cd_{2-x}GeO_{4-x-3y}N_{2y}$, 119, 304 | |
$Ba_3Cr_2MO_9$ ($M = Mo,W$), 120 , 238 | $CeO_{2-\delta}YO_{21.5}$, 115, 23 | | $BaCuAs_2O_7$, 118, 280 | $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$, 117, 103 | | $Ln_2Ba_2CuPtO_8$ ($Ln = Ho-Lu$), 120, 316 | $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O, 120, 231$ | | BaEu(CO ₃) ₂ , 116 , 286 | $Co_xCd_{1-x}In_2S_4$, 114 , 524 | | $Ba_2M_2F_7Cl\ (M = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}), 115, 98$ | CoCr ₂ S ₄ , 118, 43 | | $Ba_2MM'F_7Cl\ (M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+}),\ 115,\ 98$ | $Ln_2MCo_2O_7$ ($Ln = Sm,Gd; M = Sr,Ba$), 114, 286 | | $BaFe_{12-2x}Co_xTi_xO_{19}$, 114, 534 | β -Co(OH) ₂ , 114, 550 | | BaFe _{12-2x} Ir _x Me_xO_{19} ($Me = Co, Zn; x \sim 0.85 \text{ and } x \sim 0.50$), 120, 17 | Co ₂ (OH)PO ₄ , 114, 151 | | Ba ₂ Fe ₂ Ti ₄ O ₁₃ , 120 , 121 | CoSeO ₃ -II, 120 , 182 | | BaHgRuO ₅ , 120 , 223 | Cr ₂ Sn ₃ Se ₇ , 115 , 165 | | $BaMo_4O_{13} \cdot 2H_2O$, 116, 95 | Cs ₂ [AuCl ₂][AuCl ₄], local electronic anisotropy, probing with anoma- | | $BaMo(PO_4)_2$, 116, 364 | lous scattering diffraction, 118, 383 | | BaNb _{0.8} S _{3-δ} , 115, 427 | $Cs_3LnCl_6 \cdot 3H_2O \ (Ln = La-Nd), 116, 329$ | | BaNbS ₃ , 115, 427 | CsErTa ₆ Br ₁₈ , 118 , 274 | | $[Ba_2(OH)_2(H_2O)_{10}][Se_4], 120, 12$ | CsGeBr ₃ , 118 , 20 | | $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ (R = Gd-Lu,Y,Sc), 118, 180 | $CsMo_2O_3(PO_4)_2$, 116, 87 | | $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$ (NH) ₄ FeF ₆ structure type, 115, | CsNbOB ₂ O ₅ , 120 , 74 | | 197 | $CsTaOB_2O_5$, 120 , 74 | | BaTa ₂ S ₅ , 116, 392 | Cs(TiAs)O ₅ , 120, 299 | | Ba ₈ Ta ₄ Ti ₃ O ₂₄ , 114 , 560 | $Cs(TiP)O_5$, 120 , 299 | | $Ba_{10}Ta_{7.04}Ti_{1.2}O_{30}$, 114 , 560 | α - and β -CsTi ₃ P ₅ O ₁₉ , 115 , 120 | | BaTe ₂ , 117, 247 | $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$, 117, 256 | | BaV ₃ O ₈ , 117, 407 | CuNb ₂ O ₆ with inserted Li, 118, 193 | | $Ba_xV_8O_{16} (x = 1.09(1)), 115, 88$ | $CuNd_2Ge_2O_8$, 120 , 254 | | $BaVO(PO_4)(H_2PO_4) \cdot H_2O, 118, 241$ | $R_2Cu_2O_5$ (R = Yb,Tm,Er,Y,Ho), 115, 324 | | $Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O, 116, 77$ | Cu ₂ (OH) ₃ NO ₃ , 116 , 1 | | Ba(VO) ₂ (SeO ₃) ₂ (HSeO ₃) ₂ , 116, 77 | $Cu_{0.5}(OH)_{0.5}[VOPO_4] \cdot 2H_2O, 117, 157$ | | $Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O$, 114 , 359 | CuSr(HCOO) ₄ , 117, 145 | | BaY ₂ S ₄ , 117, 363 | $Cu_{0.5}[VOPO_4] \cdot 2H_2O, 117, 157$ | | Ba ₂ ZnN ₂ , 119 , 375 | $Cu_x Zn_{1-x}Nb_2O_6$, 115, 476 | | $Bi_{13}Ba_2Fe_{13}O_{66}$, from 2201–0201 intergrowth $Bi_2Sr_4Fe_2O_{10}$, 118, 357 | Eu ₃ Ba ₂ Mn ₂ Cu ₂ O ₁₂ , 115 , 1 | | BiCaRu ₂ O _{7-y} , 119 , 254 | EuNiO ₃ , 120 , 170 | | $Bi_2Fe_{4-x}Al_xO_9$, 114 , 199 | $Fe_{1-x}O$, 117, 398 | | BiLa ₂ O _{4.5} , 116 , 72 | $Ga_2O_3(ZnO)_m$ ($m = 7,8,9,16$), in $In_2O_3-ZnGa_2O_4-ZnO$ system, 116, | | $Bi_3RE_5O_{12}$ ($RE = Y,La,Pr-Lu$), related phases, 116, 68 | 170 | | Bi ₃ NF ₆ , 114 , 73
Bi ₂ O ₃ , 118 , 66 | GdRuC ₂ , with filled NiAs structure, 118, 158 | | Bi ₂ O ₄ , 116 , 281 | (Gd _e Sn _{1-e} S) _{1.16} (NbS ₂) ₃ , 114, 4 35
HfO ₂ , 119, 289 | | $Bi_2O_3-Ln_2O_3$ ($Ln = Sm,Eu,Gd,Tb,Dy$), 120, 32 | $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$ ($M = Cu,Pr$), 114, 230 | | $Bi_2O_3-En_2O_3$ (En = Sin, Eu, Od, 10, Dy), 120, 52
Bi_2O_3-SrO , 118, 66 | $HgBiSr_2Cu_2SbO_{15}$, double cationic ordering. 116 , 53 | | (BiS) _{1,11} NbS ₂ , 116 , 61 | HgCr ₂ Se ₄ , 118 , 43 | | Bi ₁₆ Sr ₂₈ Cu ₁₇ O _{69+δ} , 119 , 169 | $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$ ($M = Pr,Pb,Bi,Ti$), 115, 525 | | BiTe X ($X = \text{Cl,Br,I}$), 114, 379 | $HoSr_2Cu_2 _7Mo_{0.3}O_{7.54}$, 119 , 115 | | $Bi_2TeO_5-Bi_2Te_2O_7$, phase region, 116 , 240 | InCdBr ₃ , 116, 45 | | Bi ₄ Te ₂ O ₉ Br ₂ , 116 , 406 | InGaO ₃ (ZnO) ₃ , in In ₂ O ₃ -ZnGa ₂ O ₄ -ZnO system, 116, 170 | | Bi ₂ Ti ₄ O ₁₁ , 119 , 281 | InMnO ₃ , 116 , 118 | | Ca ₄ Al ₆ O ₁₆ S, 119 , 1 | $In_2O_3(ZnO)_m$ ($m = 3,4,5$), in $In_2O_3-ZnGa_2O_4-ZnO$ system, 116, 170 | | Ca ₃ CoN ₃ , 119 , 161 | InPO ₄ -1, 117, 373 | | CaCu _{0.15} Ga _{3.85} , 114, 342 | InVO ₄ -I, 118 , 93 | | CaFe Ti_2O_6 at high pressure, 114, 277 | in iron-substituted γ-nickel oxyhydroxides, 114, 6 | | Ca ₃ HfSi ₂ O ₉ , 115 , 464 | K ₂ Ag ₂ SnTe ₄ , 117, 247 | | $Ca_{10}(PO_4)_6(OH)_2$, 116 , 265 | KAlSiO ₄ polymorphs on SiO ₂ -KAlO ₂ , 115, 214 | | γ-CaSO ₄ , 117, 165 | $K_2 x Ba_{2-x} Sb_4 O_9 (PO_4)_2 (0 < x < 0.4), 114, 399$ | | $CaSO_4 \cdot 0.5H_2O$, 117, 165 | K ₂ BaSnTe ₄ , 117 , 247 | | $CaSO_4 \cdot 0.6H_2O$, 117, 165 | $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$, 116 , 290 | | $Ca_{1-x}Sr_xNiN$ (0 $\leq x \leq 0.5$) solid solutions, 115, 353 | KH ₂ PO ₄ , 114, 219 | | $Ca_nTl_2O_{n+3}$ series, chemical twinning of $Ca_2Tl_2O_5$ and $CaTl_2O_4$, 114, | $K_x IrO_2$, 118, 372 | | 428 | KMgLa(PO ₄) ₂ doped with Eu, 114, 282 | | $Ca_3Tl_2O_6$, 115, 508 | KMo(H ₂ O)O ₂ PO ₄ , 118 , 153 | | $Ca_3Tl_4O_9$, 119, 134 | KMo ₄ O ₆ tetragonal form, 117 , 217 | | CaY ₂ S ₄ , 117, 363 | $K_2Mo_2O_{10} \cdot 3H_2O$, 115, 225 | | Ca ₅ Y ₄ S ₁₁ , NaCl-type Rietveld refinement, 119, 45 | KNB ₅ GeO ₁₆ · 2H ₂ O, 115 , 373 | | | | KNiPS4, addendum, 116, 107; 117, 432 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$, 119, 176 La₄BaCu₅O₁₂, 114, 95 NbN_x, 117, 294 $Nb_{2-x}P_{3-y}O_{12}$, **116,** 335 La_{1-x}Ca_xCrO_{3-δ}, 115, 152 LaCo_{0.2}Fe_{0.8}O₃₋₅, doped with Sr, 118, 117 Nb₃SBr₇, 120, 311 La₅Cu₅O_{13.35}, 118, 170 NdMnO_{3+y}, 118, 53 LaMnO₃₊₈, 114, 516 $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O_1$, 114, 42 LaMnO₃, at room temperature and at 1273 K under N₂, 119, 191 NH₄Mo(H₂O)O₂PO₄, 118, 153 La₃NbO₇, 116, 103 $(NH_4)_2Mo_3O_{10} \cdot H_2O$, 116, 422 NH₄Sn₂(PO₄)₃, 119, 197 $(La_{1-x}Nd_x)CrO_3$ $(0 \le x \le 1.0)$, relationship with electrical properities, $(Ni_{1-x}Mg_x)_6MnO_8$, 118, 112 La₂O₃, monoclinic, identity with La_{9,33}(SiO₄)₆, 120, 38 $Ln_4Ni_3O_{10-}\delta$ (Ln = La,Pr,Nd), 117, 236 La₂O₂CN₂, 114, 592 Ni_{1,282(4)}Si_{1,284(5)}P₃, 114, 476 LaPd₂O₄, 114, 206 NiSi₂P₃, 114, 476 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-y}$ (M = Co,Fe) cubic perovskites, 119, 260 MOCuSe (M = Bi,Gd,Dy), 118,74La_{0.8}Sr_{0.2}MnO₃, 120, 175 ordering in BaBiO₂Cl, 117, 201 La₄Ti₃S₄O₈, 114, 406 PbCo₃(P₂O₇)₂, 118, 202 La₆Ti₂S₈O₅, rare-earth/transition-metal oxysulfides, 114, 406 Pb₂Cu(II)₇(AsO₄)₆, 114, 413 Pb₂Cu(I)₂Cu(II)₆(AsO₄)₆, 114, 413 La₂₀Ti₁₁S₄₄O₆, 120, 164 Li₂Ca₂Si₅O₁₃, **114**, 512 $PbFe_3(P_2O_7)_2$, 118, 202 LiCoO₂, **117**, 1 $Pb_{1-x}In_xTe (x = 0.56), 116, 33$ $Li_{1-x}H_xIO_3$, 115, 309 Pb₄(PO₄)₂CrO₄, 116, 179 $Li(H_2O)_4B(OH)_4 \cdot 2H_2O$, 115, 549 $Pb_{2-x}Ln_xRu_2O_{7-y}$ (Ln = Nd,Gd), 114, 15 Li₄Mn₅O₁₂, Rietveld refinement, 115, 420 P₄ON₆, 115, 265 LiMoOP₂O₇, 120, 260 $PrMnO_{3+v}$, 118, 53 Li_{2.88}PO_{3.73}N_{0.14}, **115**, 313 PrMnOGeO₄, 120, 7 Li_{0.8}VO₂, 114, 184 Pr₂O₃, monoclinic, identity with monoclinic Pr_{9,33}(SiO₄)₆O₂, 120, 38 δ_1 -LiZnPO₄, 117, 39 Pr₉O₁₆, 118, 133 LiZnPO₄, 114, 249 Pr₁₀O₁₈, 118, 141 Li₃Zr₄F₁₉, 120, 187 Pr₄V₅Si₄O₂₂, 116, 211 RbTaCu₂Te₄, 117, 247 Li₄ZrF₈, 120, 187 Lu₃O₂F₅, 119, 125 $M(ReO_4)_2 \cdot 4H_2O \ (M = Co, Zn), 115, 255$ (Mg,Na,Al)₂(Al,Zn)₃, 115, 270 rod packings, mathematical analysis, 114, 36 Mn₃Al_{2-r}Cr_rGe₃O₁₂, 118, 261 Ru₂P₆O₁₈, **119**, 107 Mn₄As₃, 119, 344 $Ru(PO_3)_3 \cdot Ru_2P_6O_{18}$, 119, 107 Mn₃B₇O₁₃Br, 120, 60 $M_{1/2}Sb_{2/3}^{V}(PO_4)_3$ (M = Y,In,Sc), 118, 104 Mn₃B₇O₁₃I, 120, 60 Sb₂(PO₄)₃, 118, 104 $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$ (0 $\leq \delta \leq 1$), 117, 48 ScCrC₂, 119, 324 Mn₂OBO₃, 114, 311 $Si_{1-x}C_x$: H alloys, 117, 427 $Mn_2VO(PO_4)_2 \cdot H_2O$, 115, 76 Sm₂Sr₆Cu₈O₁₇₊₈ films, 116, 300 $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$ (x = 0.53,1.00), 118, 28 $Sn_{1-x}Co_xO_y$ (0 < $x \le 0.15$), 116, 256 $Sn_{1-p}Cr_2S_{4-p}$, 115, 7 Mo-Bi-O system, letter to editor, 119, 428 $M_2\text{MoO}_4$ ($M = \text{Na,NH}_4$, Ag), 117, 323 SnS₂, 117, 219 Mo_{7.6}W_{1.4}O₂₅, 119, 8 $Sn_4S_9[(C_3H_7)_4N]_2$, 114, 506 α -Na₃Al₂(AsO₄)₃, 118, 33 $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH], 114, 506$ NaAlO₂ · 5/4H₂O, and dehydration product, 115, 126 SnSe₂, 117, 219 Na₄Al(PO₄)₂(OH), 118, 412 $Sr_3Co_2O_{7-y}$ (0.94 $\leq y \leq 1.22$), **115,** 499 Na₂BeGeO₄, 118, 62 SrCuO₂, 114, 289 $NaCa_2M_2^{2+}$ (AsO₄)₃ (M^{2+} = Mg,Ni,Co), 118, 267 $(Sr[Fe(CN)_5NO] \cdot 4H_2O)$, 120, 1 NaClO₃, high-pressure behavior, 118, 378 Sr_3MIrO_6 (M = Ni,Cu,Zn), 117, 300 NaCo₂(SeO₃)₂(OH), 115, 360 Sr₃La₂Ti₂O₁₀, 119, 412 α - and β -Na₂CuP₂O₇, 120, 23 Sr₅Mn₄CO₃O₁₀, 120, 279 Na₂Cu₂ZrS₄, 117, 30 SrNb₄O₆, 114, 301 Na₇Fe₄(AsO₄)₆, 118, 33 SrNiN. 115, 353 $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$, 115, 208 Sr(OD)₂, 119, 157 $Na_4K[Cu(HIO_6)_2] \cdot 12H_2O$, 115, 208 Sr₂RhO₄, 118, 206 $Na_3La_2(CO_3)_4F:Eu^{3+}$, 116, 286 Sr₃V₂O_{6.99}, 118, 292 NaMn₃(PO₄)(HPO₄)₂, 115, 240 SrY₂S₄, 117, 363 Na₃(MoO)₄(PO₄)₅, **114**, 543 Sr₂ZnN₂, 119, 375 Na_{0.75}Mo_{1.17}W_{0.83}O₃(PO₄)₂, **120**, 353 $M_2RETa_6Br_{15}O_3$ (M = monovalent cation; RE = rare earths), 120, 43 ε-Na₂Si₂O₅, 119, 400 TaCu₃Te₄, 117, 247 NaSn₂Cl₅, 115, 158 Tb₂Ba₂Cu₂Ti₂O₁₁, 117, 213 Na₂SnSe₃ with sechser single chains, 117, 356 $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O} \ (M = \text{K,NH}_4), 118, 341$ $NaM_x^{IV}(T_1,Z_1)_{2-x}(PO_4)_3$ ($M = Nb,Mo; 0 \le x \le 1$), 114, 224 ThFe₅P₃, 117, 80 α-Na₂UO₄, 115, 299 $Th_4Fe_{17}P_{10}O_{1-x}$, 117, 80 thiosulfate cancrinite, hydrothermally synthesized, 117, 386 β-Na₂UO₄, 115, 299 | TiO ₂ , chromium induced changes, 114 , 364
TiS,VS,TiSe,VSe monochalcogenides, 114 , 346
| Deuterium and hydrogen, solubility in crystalline Pd ₉ Si ₂ , 120 , 90 | |--|--| | TiZn ₁₆ , 118 , 219
Ti ₃ Zn ₂₂ , 118 , 219 | Sr(OD) ₂ , crystal structure, 119, 157 | | $A_4\text{Tl}_2\text{CO}_3\text{O}_6$ (A = Ca,Sr,Ba), 116, 321 | Dielectric properties | | Tl_2GeTe_3 , 117, 351 | Ba ₂ Fe ₂ Ti ₄ O ₁₃ , 120 , 121
Differential scanning calorimetry | | $TIV_{5-y}Fe_yS_8$ ($y = 0.5-1.5$), 119 , 147 | $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O$, 114, 42 | | Tm ₂ Fe ₂ Si ₂ C, 114, 66 | Differential thermal analysis | | U ₃ Co ₄ Ge ₇ , 115 , 247 | Ag ₂ S-Ga ₂ S ₃ -GeS ₂ , phase diagram, analysis by DTA and XRD, 117, | | $U_3Ni_{3,34}P_6$, 116, 307 | 189 | | $(NH_4)_2V_3O_8$, 114, 499 | Diffusion | | $A_2V_4O_9$, $(A = Rb,Cs)$, 115, 174 | chemical, Bi ₂ Sr ₂ CaCu ₂ O ₈ , 116 , 314 | | $(V^{IV}O)[V^{V}O_4] \cdot 0.5[C_3N_2H_{12}], 120, 137$ | $La_{1-x}Ca_xCrO_{3-\delta}$, 115 , 152 | | VOHPO ₄ · 1/2H ₂ O, transformation to γ -(VO) ₂ P ₂ O ₇ , 119, 349 | Disorder | | $M_2(WO_3)_3SeO_3$ ($M = NH_4,Rb,Cs$), 120, 112 | Cu in CuCrP ₂ S ₆ , 116 , 208 | | WTh ₈ Zr ₁₈ F ₄ O ₅₃ , superstructure, associating anion-excess and anion- | Doping | | deficient blocks, 115, 283 | hole and electron, $RNiO_3$ ($R = La,Nd$), 116, 146 | | Y ₂ Ba ₃ Cu ₃ Co ₂ O ₁₂ , 115, 4 07 | DSC, see Differential scanning calorimetry | | YBaCuFeO ₅ , 114 , 24 | DTA, see Differential thermal analysis | | $Y_2(Zr_yTi_{1-y})_2O_7$, 117, 108 | Durapatite | | ZnCr ₂ S ₄ , 118, 43 | induced radiation damage, analysis by TEM, 116, 265 | | ZnCr ₂ Se ₄ , 118, 43 | lead-calcium, cation effects in oxidative coupling of methane, 114, | | $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$, 118 , 303 | 138 | | Zn ₂ (OH)PO ₄ , 114 , 151 | Dysprosium | | Zn ₂ P ₂ O ₇ , 119 , 219 | $Ba_{5-y}Sr_yDy_{2-x}Al_2Zr_{1+x}O_{13+x/2}$, structural study, 118 , 180 | | Zn ₂ SiO ₄ , Fe-doped, 117, 16 | Bi ₃ Dy ₅ O ₁₂ , related phases, synthesis and characterization, 116, 68 | | $Zn_3V_4(PO_4)_6$, 115, 140 | Bi ₂ O ₃ -Dy ₂ O ₃ , low-temperature stable phase, 120, 32 | | α -MZr ₃ F ₁₅ series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), 118 , 389 | $DyAO_4$ (A = Nb,Ta), relationship between covalence and displacive | | $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$, 117, 275 | phase transition temperature, 116, 28 | | $Zr_2(WO_4)(PO_4)_2$, 120 , 101
Cyclohexaphosphates | $DyAgSb_2$ | | [NH ₃ -(CH ₂) ₂ -NH ₂ -(CH ₂) ₂ -NH ₃] ₂ P ₆ O ₁₈ · 2H ₂ O, structural, DSC, and | with HfCuSi ₂ -type structure, preparation, 115, 305 | | IR analysis, 114 , 42 | magnetism and crystal structure, 115, 441 | | 11 analysis, 114, 42 | DyBa ₂ Cu ₃ O _{7-y} , FT-IR skeletal study, 119, 36 | | n. | DyCuAs ₂ , with HfCuSi ₂ -type structure, preparation, 115, 305 | | D | Dy_2O_3 , cation array structure, 119, 131 | | Debye model | DyOCuSe, powder X-ray and IR studies, 118, 74 | | -sub-quasi-chemical approximation, thermodynamics of binary mixed | DyTa ₆ Br ₁₈ , crystal structure, 118 , 274 | | crystals, 115, 368 | $MDyTa_6Br_{18}$ ($M = K,Rb,Cs$), crystal structure, 118, 274 | | Decomposition | M_2 DyTa ₆ Br ₁₅ O ₃ ($M =$ monovalent cation), synthesis and crystal struc- | | photoassisted, salicyclic acid on TiO ₂ and Pd/TiO ₂ films, 119 , 339 | ture, 120 , 43 | | thermal, see Thermal decomposition | DyTi ₂ Al ₂₀ , with CeCr ₂ Al ₂₀ -type structure, 114 , 337 | | Defect chemistry | $(1 - x)ZrO_2 \cdot xDyO_{1.5}$, microdomains, solid solutions, and defect | | $(1-x)Ag_2SO_4-xCaSO_4$ (x = 0.01-0.20), 116, 232 | fluorite to C-type sesquioxide transition in, analysis, 120, 290 | | $(1-x)\text{CeO}_2 \cdot x\text{YO}_{1.5}$ and $(1-x)\text{ZrO}_2 \cdot x\text{RO}_{1.5}$ (R = Ho,Dy,Tb,Gd), | _ | | defect fluorite to C-type sesquioxide transition in, analysis, 120, | E | | 290 | | | effect of oxygen defect on strong-metal-support interaction between | Elastic constants | | Pt TiO ₂ (rutile)(110) surface, 119, 237 | α -Al ₂ O ₃ , relationship to valence force constants, 116, 378 | | $Fe_{1-x}O$, paracrystalline descriptions, 117, 398 | Electrical conductivity | | Y ₃ TaO ₇ EXAFS analysis and reinvestigation of structure, 114, 79 | Eu ₂ Ba ₂ Cu ₂ Ti ₂ O ₁₁ , 119 , 80 | | Defect structure | M_2 HPO ₄ - M_2 HPO ₄ -H ₂ O ($M,M' = Na,K,NH_4$), 119, 68 | | BaMnO _{3-y} $(0.22 \le y \le 0.40)$, 117, 21 | La ₂ Ba ₂ Cu ₂ Sn ₂ O ₁₁ , 119 , 80 | | La/Sr vacancy, in La _{0.8} Sr _{0.2} MnO ₃ imaging by HREM, 114, 211 | La ₂ Ba ₂ Cu ₂ Ti ₂ O ₁₁ , 119 , 80 | | MgO-doped LiNbO ₃ , model, 118 , 148 | LaCo _{0.2} Fe _{0.8} O _{3-\(\delta\)} , doped with Sr, 118 , 117
U ₃ Ni _{3.34} P ₆ , 116 , 307 | | Nb _{2-x} P _{3-y} O ₁₂ , 116 , 335
NdMnO. effect of overen postoichiometry, 118 , 53 | Electrical properties | | NdMnO _{3+y} , effect of oxygen nonstoichiometry, 118 , 53 | BaCu ₂ S ₂ , 117 , 73 | | and ordering principles, 1201, 1212, and 1222 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O superconductors, 114, 369 | α -BaCu ₄ S ₃ , 117, 73 | | PrMnO _{3+y} , effect of oxygen nonstoichiometry, 118 , 53 | BaTa ₂ S ₅ , 116, 392 | | Dehydration | Ca ₃ CoN ₃ , 119 , 161 | | Li(H ₂ O) ₄ B(OH) ₄ · 2H ₂ O, 115 , 549 | $Ln_2MCo_2O_7$ ($Ln = Sm,Gd; M = Sr,Ba$), 114, 286 | | NaAlO ₂ · $5/4$ H ₂ O, product crystal structure, 115 , 126 | $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$, 116, 290 | | thermal, $Cs_2LnCl_6 : 3H_2O$ ($Ln = La-Nd$), 116, 329 | LaMo ₈ $_{\bullet}O_{\bullet}$ ($r = 0$ and 0.3) containing isolated Mo ₈ clusters 117, 261 | $(La_{1-x}Nd_x)CrO_3$ $(0 \le x \le 1.0)$, relationship with crystal structure, 114, 236 LaSrFeO₄, effects of substitution of alkali earths or Y for La, 115, 456 $NaM_x^{IV}(Ti,Zr)_{2\sim x}(PO_4)_3$ $(M = Nb,Mo; 0 \le x \le 1), 114, 224$ NbN., 117, 294 $Nd(Cr_{1-x}Mn_x)O_3$ (0 $\leq x \leq 0.6$), relationship to cation-anion-cation overlap, 118, 367 $Pb_{2-x}Ln_xRu_2O_{7-y}$ (*Ln* = Nd,Gd), **114**, 15 MP_2O_7 (M = Mo, W), 115, 146 Sr₃Ru₂O₇, 116, 141 Sr₃V₂O_{6,99}, 118, 292 Electrical resistivity ACu_7S_4 (A = Tl,K,Rb), 115, 379 Mn_xTaS₂, intercalation compounds, 114, 1 Electrides $[Cs^{+}(15\text{-crown-5})(18\text{-crown-6})e^{-}]_{6} \cdot (18\text{-crown-6}), \text{ properties, } 117, 309$ Electrocatalysts LaNiO₃ and NiCo₂O₄, preparation by sol-gel route, 116, 157 Electrochemistry H_rNb₂O₅, 115, 260 LiMn₂O₄ and Li_{1-x}Mn₂O₄ as 4-V Li-cell cathodes, comparison, letter to editor, 119, 216 Electron beam deposition hot-filament assisted, crystalline cubic BN, 118, 99 Electron diffraction BiLa₂O_{4.5}, 116, 72 Cs₄Sb₄O₈(Si_{4(1-x)}Ge_{4x}O₁₂), solid solution, electron and X-ray diffraction and ²⁹Si MAS NMR analysis, 114, 528 $Sn_{1-p}Cr_2S_{4-p}$, 115, 7 Electronic absorption NaCo₂(SeO₃)₂(OH), 115, 360 Electronic anisotropy Cs₂[AuCl₂][AuCl₄], local, probing with anomalous scattering diffraction, 118, 383 Electronic distortions out-of-center, around octahedrally coordinated d⁰ transition metals, 115, 395 Electronic lone pairs localization in α-PbO, SnO, Pb_{1-x}(TiO)_xO, Pb₃O₄, Pb₃(V,P)₂O₈, 114, 459 Electronic properties BaNb_{0.8}S_{3- δ}, 115, 427 BaNbS₃, 115, 427 copper sulfide films of variable composition, 114, 469 A, A'CoRuO₆ (A, A' = Sr, Ba, La), 114, 174 $\text{Li}_{x}\text{Na}_{y}\text{V}_{2}\text{O}_{5}$ (0.23 $\leq x + y \leq 0.37$), 118, 10 SrCoO₃₋₈, electronic states, effects of oxygen, 119, 76 SrMnO_{3-x}, 114, 242 Electronic spectra Ba₄LiCuO₄(CO₃)₂ and Ba₄NaCuO₄(CO₃)₂, 119, 359 $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$ and $Na_4K[Cu(HIO_6)_2] \cdot 12H_2O$, 115, 208 oxidic lithium spinels, antiferromagnetic A-B interactions between tetrahedral $3d^5$ and $3d^5$ or $3d^3$ octahedral cations, 120, 244 Electronic structure InCdBr₃, 116, 45 Electron microscopy $Bi_2TeO_5-Bi_2Te_2O_7$, phase region, 116, 240 Electron paramagnetic resonance α - and β -AlF₃ · 3H₂O, incorporation of Cu(II), 116, 249 BaCuO_{2+x}, 119, 50 α -, β -, and γ -Fe₂WO₆ phases, analysis at low temperatures, 120, 216 $Y_2BaCuO_5-YBa_2Cu_3O_{6+x}$, 116, 136 Electrostatic energy in α-PbO, SnO, Pb_{1-x}(TiO)_xO, Pb₃O₄, Pb₃(V,P)₂O₈ and BiSrCaCuO- type superconductor, calculation, 114, 459 **Emissions** green-to-blue up-conversion, from U4+ ion in Cs2ZrCl6, effect of temperature, 116, 113 Enthalpy Ho₂(TeO₃)₃ and Te₄O₁₁, tellurite formation, determination, 118, 210 EPR, see Electron paramagnetic resonance $Ba_{5-y}Sr_yEr_{2-x}Al_2Zr_{1+x}O_{13+x/2}$, structural study, **118**, 180 Bi₃Er₅O₁₂, related phases, synthesis and characterization, 116, 68 CsErTa₆Br₁₈, crystal structure, 118, 274 $ErAO_A$ (A = Nb.Ta), relationship between covalence and displacive phase transition temperature, 116, 28 ErAgSb₂ with HfCuSi₂-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 ErBa₂Cu₃O_{7-y}, FΓ-IR skeletal study, 119, 36 Er₂Ba₂CuPtO₈, synthesis and characterization, 120, 316 ErCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 Er₂Cu₂O₅, structural characterization by neutron diffraction, 115, 324 Er₂O₃, cation array structure, 119, 131 Er₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 ErTa₆Br₁₈, crystal structure, 118, 274 $MErTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 ErTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 Er₂(TeO₃)₃ and Te₄O₁₁, tellurite formation, enthalpy determination, 118, 210 ErTi₂Al₂₀, with CeCr₂Al₂₀-type structure, 114, 337
ESR, see Electron paramagnetic resonance Ethanol incipient chemical reaction with scratched silicon surface, 120, 96 Europium BaEu(CO₃)₂, optical properties, correlation to crystallographic structure, 116, 286 Bi₃Eu₅O₁₂, related phases, synthesis and characterization, 116, 68 Bi₂O₃-Eu₂O₃, low-temperature stable phase, 120, 32 in doping of KMgLa(PO₄)₂ phosphate, optical and structural investigation, 114, 282 $EuAO_4$ (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 EuT_2Al_{20} (T = Ti,Mo,W), with $CeCr_2Al_{20}$ -type structure, 114, 337 EuBa₂Cu₃O_{7-v}, FT-IR skeletal study, 119, 36 Eu₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, 119, 80 Eu₂Ba₂Cu₂Ti₂O₁₁₋₈, synthesis, structure, and superconductivity, 119, Eu₃Ba₂Mn₂Cu₂Q₁₂ intergrowth between 123 and 0201 structures, 115, 1 Eu_{2-r}Ce_rCuO₄, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491 EuNiO₃, preparation, crystal structure, and metal-insulator transition, **120,** 170 Eu₂O₃, cation array structure, 119, 131 EuTa₆Br₁₈, crystal structure, 118, 274 M_2 EuTa₆Br₁₈ ($M = K_1$ Rb,Cs), crystal structure, 118, 274 $MEuTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 EuTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 Eu₂(TeO₃)₃ and Te₄O₁₁, tellurite formation, enthalpy determination, 118, 210 α-EuZr₃F₁₅ series, cationic distribution, 118, 389 Na₃La₂(CO₃)₄F: Eu³⁺, optical properties, correlation to crystallo- graphic structure, 116, 286 EXAFS, see Extended X-ray absorption fine structure 114, 52 rare-earth mixed oxide, magnetic susceptibility effect of crystal field, Extended X-ray absorption fine structure LiNb(OH)OPO₄, structural analysis, **114**, 317 Li_{0.8}VO₂, **114**, 184 Mn₃Al_{2-x}Cr_xGe₃O₁₂, **118**, 261 Y₃TaO₇, **114**, 79 F Ferroelectricity Aurivillius phases, 114, 112 Ferromagnetism, see also Antiferromagnetism LaMnO₃, 114, 294 NdNiO₃, 114, 294 Films copper sulfide, variable composition, optical and electrical properties, 114, 469 Sm₂Sr₆Cu₈O₁₇₊₈, analysis by HREM, **116**, 300 thin BN, crystalline cubic, hot-filament-assisted electron beam deposition, 118, 99 La_{1-x}MnO_{3-δ}, self-doped, giant magnetoresistance, **117**, 420 pulsed laser deposited, Sm_{1-x}Sr_xSr_xCuO_{2.5-x/2+δ}, perovskite phases and phasoids, **116**, 37 $Sn_{1-x}Co_xO_y$ (0 < $x \le 0.15$), structural models, 116, 256 TiO₂-Pd films, photoassisted decomposition of salicyclic acid, 119, 339 Fluorine α - and β -AlF₃ · 3H₂O, incorporation of Cu(II), analysis by ESR, 116, 249 $AI_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, synthesis and crystal structure, **120**, 197 BaEu(CO₃)₂, optical properties, correlation to crystallographic structure, 116, 286 $Ba_2M_2F_7Cl$ ($\dot{M} = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$), synthesis, magnetic behavior, and structural study, 115, 98 $Ba_2MM'F_7Cl(M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$, synthesis, magnetic behavior, and structural study, 115, 98 Bi₃NF₆, synthesis and structure, 114, 73 LiF-ZrF₄, phase diagram, reanalysis with Li₄ZrF₈ and Li₃Zr₄F₁₉ crystal structures. **120.** 187 Li₃Zr₄F₁₉, crystal structure, in reanalysis of LiF-ZrF₄ phase diagram, **120**, 187 Li₄ZrF₈, crystal structure, in reanalysis of LiF-ZrF₄ phase diagram, 120, 187 Lu₃O₂F₅, synthesis and crystal structure, 119, 125 Na₃La₂(CO₃)₄F:Eu³⁻, optical properties, correlation to crystallographic structure, **116**, 286 $(NH_4)_3FeF_6$, $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$ with related structure, powder X-ray and neutron diffraction analysis, 115, 197 PbF₂/GeO₂/WO₃, glass doped with Tm³⁺ and Tm³⁺/Tb³⁺, blue upconversion emission, 115, 71 WTh₈Zr₁₈F₄O₅₃, superstructure, associating anion-excess and anion-deficient blocks, **115**, 283 α -MZr₃F₁₅ series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), cationic distribution, 118, 389 Fluorite homologous series Pr₉O₁₆, crystal structures, 118, 133 $Pr_{10}O_{18}$, oxygen-deficient fluorite-related R_nO_{2-n} , structures, 118, 141 Fourier-transform infrared spectroscopy BaAl₉O_{14.5}, BaAl₁₂O₁₉, and BaAl₁₄O₂₂, **117**, 8 $RBa_2Cu_3O_{7-y}$ (R = Ln or Y), skeletal study, **119**, 36 BaFe₁₂O₁₉, **117**, 8 [n-C₉H₁₉NH₃]₂CuCl₄, **117**, 97 N(CH₃)₄H₂PO₄ · H₂O, **120**, 343 Nd_{2-x}Ce_xCuO₄, **119**, 36 NH₂HSO₃, **116**, 217 Fructose mediated synthesis of β -Co(OH)₂, 114, 550 G Gadolinium $Ba_{5-y}Sr_yGd_{2-x}Al_2Zr_{1+x}O_{13+x/2}$, structural study, 118, 180 $Bi_3Gd_5O_{12}$, related phases, synthesis and characterization, 116, 68 Bi₂O₃-Gd₂O₃, low-temperature stable phase, 120, 32 Ce_{0.818}Gd_{0.182}O_{1.909-y}, nonstoichiometric 10 mol%, phase diagram, **117**, 392 GdAO₄ (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 GdAgSb2 with HfCuSi₂-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 $Gd_6T_4Al_{43}$ (T = Ti,V,Nb,Ta), with $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131 GdBa₂Cu₃O_{7-v}, FT-IR skeletal study, 119, 36 Gd₂Ba₂Cu₂Ti₂O₁₁₋₈, synthesis, structure, and superconductivity, 119, 224 $GdBa_2SbO_6$, synthesis and characterization, as substrates for YBa_2 $Cu_3O_{7-\delta}$, 116, 193 Gd_{2-x}Ce_xCuO₄, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491 Gd₂MCo₂O₇ (M = Sr,Ba), synthetic, structural, electrical, and magnetic properties, 114, 286 GdCuAs2, with HfCuSi2-type structure, preparation, 115, 305 $Gd_{1-x}A_xMnO_3$ (A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204 Gd₂O₃, cation array structure, 119, 131 GdOCuSe, powder X-ray and IR studies, 118, 74 GdRuC₂, with filled NiAs structure, 118, 158 (Gd_eSn_{1-e}S)_{1.16}(NbS₂)₃, crystal structure and synthesis, 114, 435 GdTa₆Br₁₈, crystal structure, 118, 274 $MGdTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 GdTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 M'-GdTaO₄, synthesis and characterization, letter to editor, **118**, 419 GdTi₂Al₂₀, with CeCr₂Al₂₀-type structure, **114**, 337 α-GdZr₃F₁₅ series, cationic distribution, 118, 389 Na₂GdOPO₄, solid-state synthesis, X-ray powder diffraction, and IR data, 120, 275 $Pb_{2-x}Gd_xRu_2O_{7-y}$, synthesis, crystal structure, and electrical properties, 114, 15 PrPd₃As₂ arsenides, preparation, 115, 37 Ti₂(Ba₂Gd)Gd_{2-x}Ce_xCu₂O₁₃, design and synthesis, 114, 57 (1 - x)ZrO₂ · xGdO_{1.5}, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290 Gallium $Ag_2S-Ga_2S_3-GeS_2$, phase diagram, analysis by DTA and XRD, 117, 189 CaCu_{0.15}Ga_{3.85}, crystal structure, analysis by powder X-ray diffraction data, **114**, 342 $Ca_xSn_xGa_{8-2x}O_{12}$ (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of Sn^{4+} on, 118, 6 AGa_2X_4 (A = Cd,Hg; X = S,Se), compounds crystallizing in thiogallatetype structure, lattice dynamical calculations, 114, 442 GaMo₄S₈-type compounds, tetrahedral clusters: metal bonding analysis, 120, 80 $Ga_2O_3(ZnO)_m$ (m = 7.8,9,16), in $In_2O_3-ZnGa_2O_4-ZnO$ system, 116, InGaO₃(ZnO)₃, in In₂O₃-ZnGa₂O₄-ZnO system, synthesis and singlecrystal data, 116, 170 $\text{Li}_{0.5}(\text{FeCr})_x \text{Ga}_{2.5-2x} \text{O}_4$ and $\text{Li}_{0.5} \text{Fe}_x \text{Ga}_{2.5-x} \text{O}_4$, tetrahedral $3d^5$ and $3d^5$ or $3d^3$ octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, 120, 244 mixed valent nickel and manganese oxide ceramics, superconducting properties, 116, 355 $Zn_{1-z}Mn_zGa_2Se_4$, energy gap values and T(z) diagram, 115, 416 Garnet $\text{Ca}_x \text{Sn}_x \text{Ga}_{8-2x} \text{O}_{12}$ (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of Sn^{4+} on, 118, 6 Gels Al-O-R-O-Al, characterization by IR, and ¹³C and ²⁷Al NMR techniques, **119**, 319 ### Germanium Ag₂MnGeTe₄, crystal symmetry, 115, 192 $Ag_2S-Ga_2S_3-GeS_2$, phase diagram, analysis by DTA and XRD, 117, 189 Cd_{2-x}GeO_{4-x-3y}N_{2y}, preparation and characterization, 119, 304 CsGeBr₃, pressure-induced phase transition, analysis by X-ray diffraction and Raman spectroscopy, **118**, 20 Cs₄Sb₄O₈(Si_{4(1-x)}Ge_{4x}O₁₂), solid solution, electron and X-ray diffraction and ²⁹Si MAS NMR analysis, **114**, 528 CuNd₂Ge₂O₈, crystal structure, growth, and magnetic and spectroscopic properties, 120, 254 MGe_xTe_2 (M = Nb,Ta; $1/3 \le x \le 1/2$), origin of short interslab Te-Te contacts, analysis, 119, 394 KNB₅GeO₁₆ · 2H₂O, with 2D channel network, 115, 373 Mn₃Al_{2-x}Cr_xGe₃O₁₂, X-ray absorption spectroscopic and magnetic analysis, 118, 261 Na₂BeGeO₄, structure and ionic conductivity, 118, 62 PbF₂/GeO₂/WO₃, glass doped with Tm³⁺ and Tm³⁺/Tb³⁺, blue upconversion emission, 115, 71 PrMnOGeO₄, preparation and crystal structure, 120, 7 Tl₂GeTe₃, crystal structure, 117, 351 U₃Co₄Ge₇, crystal structure and magnetic properties, 115, 247 U₂Fe_{17-x}Ge_xC_y, magnetic properties, 115, 13 Giant magnetoresistance effects in $Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta}$, effects, 117, 424 in self-doped La_{1-x}MnO₃₋₆ thin films, 117, 420 ## Glasses polarizable and OH-containing, applications to MOS devices, mechanism 120, 54 TiO₂-NaPO₃-Na₂B₄O₇ system, optically nonlinear, Raman scattering and XAFS analysis, 120, 151 ZnO-B₂O₂~SiO₂-P₂O₅, fluoride-containing, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212 # Glucose mediated synthesis of β -Co(OH)₂, 114, 550 Glycerol mediated synthesis of β -Co(OH)₂, 114, 550 Gold AuNi₂Sn₄, crystal structure, 119, 142 MAu_2O_4 (M = Sr,Ba), preparation and crystal structure, 118, 247 Cs₂[AuCl₂][AuCl₄], local electronic anisotropy, probing with anomalous scattering diffraction, 118, 383 # H ## Hafnium Ag₄Hf₃S₈, crystal structure and conductivity, 115, 112 Ca₃HfSi₂O₉, structure determination from powder
diffraction, 115, 464 with HfCuSi₂, ternary arsenides and antimonides with related structure, preparation, 115, 305 HfO₂, powders, characterization by transmission electron microscopy, 119, 289 High-resolution electron microscopy BaCoO_{3-v}, 120, 327 La_{0.8}Sr_{0.2}MnO₃La/Sr vacancy defects, 114, 211 $La_{0.8}Sr_{0.2}MnO_3$, ordered La(Sr)-deficient nonstoichiometry in, 120, 175 $Sm_2Sr_6Cu_8O_{17+8}$ films, 116, 300 $Sr_{1-x}La_xTiO_{3+0.5}x$ layer structure, 117, 88 High-resolution electron spectroscopy $Bi_{2-x}Nb_xO_{3+x}$ solid solution, 119, 311 ### Holmium $Ba_{5-\nu}Sr_{\nu}Ho_{2-x}Al_{2}Zr_{1+x}O_{13+x/2}$, structural study, 118, 180 Bi₃Ho₅O₁₂, related phases, synthesis and characterization, 116, 68 HoAO₄ (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 HoAgSb₂ with HfCuSi₂-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 HoBa₂Cu₃O_{7-v}, FT-IR skeletal study, 119, 36 Ho₂Ba₂CuPtO₈, synthesis and characterization, 120, 316 HoCuAs2, with HfCuSi2-type structure, preparation, 115, 305 $\text{Ho}_2\text{Cu}_2\text{O}_5$, structural characterization by neutron diffraction, 115, 324 $\text{Ho}_6\text{Mo}_4\text{Al}_{43}$, related structure of $A_6T_4\text{Al}_{43}$ (A = Y, Nd, Sm, Gd-Lu, U; T = Ti, V, Nb, Ta), 116, 131 Ho_xMo₆S₈, amorphous precursors for low-temperature preparation, 117, 269 Ho₂O₃, cation array structure, 119, 131 HoSr₂Cu₂ Mo₀ O₇ S₄, synthesis and crystal structure, 119, 115 HoTa₆Br₁₈, crystal structure, 118, 274 MHoTa₆Br₁₈ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 HoTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, **120**, 43 Ho₂(TeO₃)₃ and Te₄O₁₁, tellurite formation, enthalpy determination, 118, 210 HoTi₂Al₂₀, with CeCr₂Al₂₀-type structure, 114, 337 Ho_xW₆S₈, amorphous precursors for low-temperature preparation, 117. 269 $(1 - x)ZrO_2 \cdot xHoO_{1.5}$, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290 Homogeneity $PbO-ZrO_2$ solution derived powders, related problems, 117, 343 Homogeneity range and physical properties, intercalation compounds of Mn_xTaS_2 , 114, 1 HREM, see High-resolution electron microscopy Hydrogen AgMn₃(PO₄)(HPO₄)₂, synthesis and structure, 117, 206 $Al_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, synthesis and crystal structure, **120**, 197 BaVO(PO₄)(H₂PO₄) · H₂O, synthesis, structure, and magnetism, 118, 241 $Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O$, hydrothermal synthesis and crystal structure, 116, 77 Ba(VO)₂(SeO₃)₂(HSeO₃)₂, hydrothermal synthesis and crystal structure, **116**, 77 (CH₃)₃NCH₂COO · (COOH)₂ · H₂O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129 [n-C₉H₁₉NH₃]₂CuCl₄, characterization by FTIR, 117, 97 $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$, crystal structure, determination from powder data, 117, 103 CH₃NH₃SnI₃, transport, optical, and magnetic properties, 114, 159 (C₁₈H₃₀N₃)₂ · [Si₈O₁₈(OH)₂] · 41H₂O, X-ray diffraction and NMR analysis, **120**, 231 CrOOH-CrO₂ system, CrO₂ from decomposition, interconversion in, 119, 13 ``` CsHSO₄ phase transitions, 117, 412 thermally induced phase transitions, 117, 414 Cu(C₄H₅N₃)₂Cl₂, synthesis and characterization, 117, 333 Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4, synthesis and structure determination with silica gels, 117, 256 CuSr(HCOO)₄, crystal structure and thermal decomposition, 117, 145 and deuterium, solubility in crystalline PdoSi2, 120, 90 H_rNb₂O₅, electrochemical investigations, 115, 260 M_2HPO_4-M_2'HPO_4-H_2O (M_1M'=Na_1K_1NH_4), electrical conductivity measurements. 119, 68 KH₂PO₄, crystal structure, 114, 219 Li_{1-x}H_xIO₃, protons, localization by single-crystal neutron diffraction, 115, 309 MgHOP₄ · 0.78H₂O, ambient pressure and temperature synthesis, 114, 598 Na₄H[Cu(H₂TeO₆)₂] · 17H₂O, crystal structure, electronic spectra, and XPS, 115, 208 Na₄K[Cu(HIO₆)₂] · 12H₂O, crystal structure, electronic spectra, and XPS, 115, 208 NaMn₃(PO₄)(HPO₄)₂, synthesis and structure, 115, 240 N(CH₃)₄H₂PO₄ · H₂O, FT-IR and polarized Raman spectra, 120, 343 [NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O, structural, DSC, and IR analysis, 114, 42 NH2HSO3, analysis by vibrational and surface enhanced Raman scat- tering, 116, 217 ReH_s, formation at high pressure, in situ diffraction study, 118, 299 Si_{1-x}C_x: H alloys, structural properties and chemical ordering, 117, 427 Sn₄S₉[(C₃H₇)₄N]₂, preparation and structural characterization, 114, 506 Sn₄S₉[(C₃H₇)₄N] · [(CH₃)₃NH], preparation and structural character- ization, 114, 506 βSr(HCOO)₂, crystal structure and thermal decomposition, 117, 145 (VIVO)[VVO₄] · 0.5[C₃N₂H₁₂], synthesis, crystal structure, and struc- tural correlations with V₂O₅ and other vanadyl compounds, 120, VO(HCO₂)₂ · H₂O, compounds based on double layers in, synthesis, 117, 136 Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}, synthesis and stability, 117, 275 Hydrogen bonding [Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O], 114, 102 [Ba_2(OH)_2(H_2O)_{10}][Se_4], 120, 12 Hydrolysis catalysts and sol-gel technique, in preparation of crystalline structure of MgO, 115, 411 Hydrothermal synthesis BaMo₄O₁₃ · 2H₂O, 116, 95 BaV₃O₈, 117, 407 Ba(VO)₂(SeO₃)₂(HSeO₃)₂, 116, 77 Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O, 116, 77 Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O, 114, 359 Cu_{0.5}(OH)_{0.5}[VOPO₄] · 2H₂O, 117, 157 Cu_{0.5}[VOPO_4] \cdot 2H_2O, 117, 157 Mn_2VO(PO_4)_2 \cdot H_2O, 115, 76 NH₄Sn₂(PO₄)₃, 119, 197 thiosulfate cancrinite, 117, 386 Hydroxide [Ba₂(OH)₂(H₂O)₁₀][Se₄], synthesis and crystal structure, 120, 12 Ca10-x-yCdxPby(PO4)6(OH)2, solid solutions, analysis by X-ray and IR spectroscopy, 116, 8 ``` Ca₁₀(PO₄)₆(OH)₂, induced radiation damage, analysis by TEM, 116, (C₁₈H₃₀N₃)₂ · [Si₈O₁₈(OH)₂] · 41H₂O, X-ray diffraction and NMR anal- Co₂(OH)PO₄, structure-directing effect of organic additives, 114, 151 β-Co(OH)₂, organic additive-mediated, synthesis, 114, 550 ysis, 120, 231 ``` Cu₂(OH)₃NO₃, magnetic behavior and exchange coupling, single crys- tal study, 116, 1 Cu_{0.5}(OH)_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal struc- ture, 117, 157 glasses containing, applications to MOS devices, mechanism, 120, 54 KOH concentrated basic media, quartz in, kinetics and dissolution mecha- nism, solvent influence, 118, 254 incipient chemical reaction with scratched silicon surface, 120, 96 layered double, Zn-Al, preparation by surface modification of layered compound, 117, 337 Li(H₂O)₄B(OH)₄ · 2H₂O, crystal structure and dehydration process, 115, 549 LiNb(OH)OPO₄, structural analysis by XRD and EXAFS, 114, 317 LiOH, concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254 (Mn_xZn_{1-x})(OH)(NO_3)H_2O(x = 0.53,1.00), synthesis and characteriza- tion, 118, 28 Na₄Al(PO₄)₂(OH), synthesis and characterization, 118, 412 NaCo₂(SeO₃)₂(OH), polarized electronic absorption spectra and crystal structure, 115, 360 NaOH, concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254 (NH₄)₆[TeMo₆O₂₄] · Te(OH)₆ · 7H₂O, single crystals, infrared and polarized Raman spectra, 118, 341 (M^{2+})_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{2+} = Cu, Zn, Co; M^{3+} = Cr), charac- terization, 119, 246 Me(OH)_2-SiO₂ (Me = Ca,Mg,Sr), mixtures, surface changes in basicity and species, role of mechanical activation, 115, 390 Pb₁₀(PO₄)₆(OH)₂, nucleation kinetics, analysis by X-ray and IR spec- troscopy, 116, 8 related capacitance-voltage recovery effect in MOS capacitors passiv- ated by fluoride-containing ZnO-B₂O₂-SiO₂-P₂O₅ glasses, 118, 212 VOHPO₄ · 1/2H₂O, transformation to \gamma-(VO)₂P₂O₇, 119, 349 [Zn_2Cr(OH)_6]X \cdot nH_2O, where X^- = 1/2 \text{ mal}^{2-}, cis-[Cr(mal)_2(H_2O)_2]^-, and 1/3[Cr(mal)_3]^{3-} (mal = malonate), malonate intercalation into, (Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O, cation distribution and coordina- tion chemistry, structural and spectroscopic study, 118, 303 Zn₂(OH)PO₄, structure-directing effect of organic additives, 114, 151 Hydroxyapatite, see Durapatite 8-Hydroxyquinoline solid state reactions with CdX_2 (X = Cl, Br, I), 117, 416 Ignition reaction Ta₂N formation in air, letter to editor, 119, 207 Impedance spectroscopy LiTaO₃, 116, 185 Indium (AgIn)_{2(1-z)}(MnIn_2)_zTe_4, alloys, T(z) diagram and optical energy gap (Ca_{0.9}In_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, 120, 105 Co_xCd_{1-x}In₂S₄, spinel solid solutions, structural, magnetic, and optical properties, 114, 524 InCdBr₃, synthesis, crystal structure, and electronic structure, 116, 45 InGaO₃(ZnO)₃, in In₂O₃-ZnGa₂O₄-ZnO system, synthesis and single- crystal data, 116, 170 ``` InMnO₃, synthesis, structure, and magnetic properties, 116, 118 In_xNb₃Se₄, multilayer precursor synthesis, 117, 290 In₂O₃, cation array structure, 119, 131 In₂O₃-ZnGa₂O₄-ZnO system, synthesis and single-crystal data, 116, 170 $In_2O_3(ZnO)_m$ (m = 3.4.5), in $In_2O_3-ZnGa_2O_4-ZnO$ system, 116, 170 InPO₄-1, synthesis and characterization, 117, 373 In_{1/2}Sb^Y_{2/3}(PO₄)₃, preparation and crystal structure, 118, 104 InVO₄-I, metastable form, crystal structure, 118, 93 NiAs-Ni₂In, intermetallic phases, superstructures in, analysis, 118, 313 $Pb_{1-x}In_xTe (x = 0.56)$, oxidation states, **116**, 33 α -MZr₃F₁₅ series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), cationic distribution, 118, 389 Infrared spectroscopy, see also Fourier-transform infrared spectroscopy Al-O-R-O-Al gels, 119, 319 Ca_{10-x-y}Cd_xPb_y(PO₄)₆(OH)₂ solid solutions, 116, 8 $(CH_3)_3NCH_2COO \cdot (COOH)_2 \cdot H_2O$, 114, 129 Na₂GdOPO₄, 120, 275 $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O$, 114, 42 $(NH_4)_6[TeMo_6O_{24}] \cdot Te(OH)_6 \cdot 7H_2O$, 118, 341 MOCuSe (M = Bi,Gd,Dy), 118,74Pb₁₀(PO₄)₆(OH)₂, nucleation kinetics, 116, 8 $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O} \ (M = \text{K,NH}_4), 118, 341$ $M^{\rm I}M^{\rm
III}({\rm WO_4})_2$ ($M^{\rm I}={\rm Li,Na,K};$ $M^{\rm III}={\rm Bi,Cr}$), vibrational properties, 117, 177 Intercalation malonate into $[Zn_2Cr(OH)_6]X \cdot nH_2O$, where $X^- = 1/2 \text{ mal}^2$, cisnate intercalation into, 119, 331 $[Mn(H_2O)]1/4(VO)3/4PO_4 \cdot 2H_2O, 116, 400$ Intercalation compounds Mn_xTaS₂, physical properties and homogeneity range, 114, 1 Intergrowths $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$ of 2201 and 0201 structure, 118, 227 **Iodine** BiTeI, crystal structure, determination by powder X-ray diffraction, 114, 379 CdI₂, solid state reactions with 8-hydroxyguinoline, 117, 416 CH₃NH₃SnI₃, conducting perovskite, transport, optical, and magnetic properties, 114, 159 $Li_{1-x}H_xIO_3$, protons, localization by single-crystal neutron diffraction, 115, 309 Mn₃B₇O₁₃I, high-temperature single crystal X-ray diffraction, 120, 60 Na₄K[Cu(HIO₆)₂] · 12H₂O, crystal structure, electronic spectra, and XPS, 115, 208 YbI₂ · H₂O, crystal structure, determination by X-ray powder diffraction, 114, 308 YbI_2-AI (A = Na,K,Rb,Cs) phase diagrams, measurement and calculation, 114, 146 Ionic conductivity Ag_{3.8}Sn₃S₈, 116, 409 $(1 - x)Ag_2SO_4-(x)CaSO_4$ (x = 0.01 - 0.20), 116, 232 $Ag_4Zr_3S_8$, 116, 409 $[Cr(mal)_2(H_2O)_2]^-$, and $1/3[Cr(mal)_3]^{3-}$ (mal = malonate), malo-Li_{2.88}PO_{3.73}N_{0.14}, **115**, 313 Na₂BeGeO₄, 118, 62 oxide, in solid solutions $Ln_{1-x}Sr_xCoO_{3-\delta}$ (Ln = La,Pr,Nd) solid solutions, oxide ion conduction, 120, 128 Ion migration oxygen, in $LaBO_3$ (B = Cr,Mn,Fe,Co), 118, 125 Ion transport Na ions in Na_xCr_xTi_{8-x}O₁₆ tunnel structure, analysis, 116, 296 BaFe_{12-2x}Ir_x Me_x O₁₉ (Me = Co,Zn; $x \sim 0.85$ and $x \sim 0.50$), magnetic properties, cationic distribution in relation to, 120, 17 K_xIrO₂, structural study, 118, 372 La_2MIrO_6 (M = Mg,Co,Ni,Zn), structure and magnetic properties, 116, 199 Sr_2MIrO_6 (M = Ca,Mg), preparation and stabilization by high oxygen pressure, 115, 447 Sr_3MIrO_6 (M = Ni,Cu,Zn), structure and magnetic properties, 117, 300 Iron $BaFe_{12-2x}Co_xTi_xO_{19}$ crystallite size and shape, determination by X-ray line broadening analysis, **114,** 534 samples with composition range 0 < x < 1, synthesis for magnetic recording, 115, 347 $Ba_2FeM'F_7Cl$ ($M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$), synthesis, magnetic behavior, and structural study, 115, 98 Ba₂Fe₂F₇Cl, synthesis, magnetic behavior, and structural study, 115, 98 BaFe_{12-2x}Ir_x Me_xO_{19} ($Me = Co_1Zn$; $x \sim 0.85$ and $x \sim 0.50$), magnetic properties, cationic distribution in relation to, 120, 17 BaFe₁₂O₁₉, FT-IR skeletal powder spectra, 117, 8 Ba₂Fe₂Ti₄O₁₃, preparation, crystal structure, dielectric properties, and magnetic behavior, 120, 121 [Ba₂(H₂O)₁₀][Fe(CN)₅NO]₂3H₂O], hydrogen-bonding system, **114**, 102 $Bi_{13}Ba_2Fe_{13}O_{66}$, from 2201–0201 intergrowth $Bi_2Sr_4Fe_2O_{10}$, 118, 357 Bi₂Fe_{4-x}Al_xO₉, structural and magnetic studies, 114, 199 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$, with intergrowths of 2201 and 0201 structure, synthesis, 118, 227 Bi₂Sr₄Fe₂O₁₀, 2201–0201 intergrowth, Bi₁₃Ba₂Fe₁₃O₆₆ from, synthesis, 118, 357 CaFeTi₂O₆, high-pressure synthesis and crystal structure, 114, 277 $Co_x Cu_{1-x} Fe_2 O_4$ ($0 \le x < 0.3$), thermal behavior and magnetic properties, erratum, 117, 64; 117, 433 (Cr_{1-x}Fe_x)₃Te₄, magnetic properties, **120**, 49 doped Zn₂SiO₄ single crystals, luminescence, 117, 16 Fe-Mo-O catalysts, reduction behavior, analysis by TPR with in situ Mössbauer spectroscopy and X-ray diffraction, 117, 127 Fe_{1-x}O, defect distributions in, paracrystalline descriptions, 117, 398 α-,β-, and γ-Fe₂WO₆ phases, magnetic and EPR studies at low temperatures, 120, 216 KeFeS2, tetrahedral FeS5-unit containing, X-ray absorption spectra, **119.** 380 LaCo_{0.2}Fe_{0.8}O_{3-δ}, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, 118, 117 LaFeO₃, oxygen ion migration, 118, 125 $La_{0.2}Sr_{0.8}Cu_{0.4}Fe_{0.6}O_{3-\gamma}$, synthesis, 119, 260 LaSrFeO₄, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456 $\text{Li}_{0.5}(\text{FeCr})_x\text{Ga}_{2.5-2x}\text{O}_4$ and $\text{Li}_{0.5}\text{Fe}_x\text{Ga}_{2.5-x}\text{O}_4$, tetrahedral $3d^5$ and $3d^5$ or $3d^3$ octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, 120, 244 Lu₂Fe₂Si₂C, preparation, structure refinement, and properties, 114, 66 II-Na₃Fe₂(AsO₄)₃, structural relation to α-Na₃Al₂(AsO₄)₃ and Na₇ Fe₄(AsO₄)₆ sodium ion conductors, 118, 33 Na₇Fe₄(AsO₄)₆, crystal structure: structural relation to II-Na₃ $Fe_2(AsO_4)_3$, 118, 33 Na₅FeS₄, tetrahedral FeS⁵-unit containing, X-ray absorption spectra, 119, 380 **114,** 265 Nd_{1-x}Ca_xFeO_{3-y}, nonstoichiometry and physical properties, analysis, $(NH_4)_3FeF_6$, $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$ with related structure, powder X-ray and neutron diffraction analysis, 115, 197 Ni-Al-Fe, synthesis and characterization, synthesis and characterization. 118, 285 Ni_{0.39}Fe_{2.61}O₄₋₈, in analysis of CO₂ decomposition to carbon, 120, 64 ordered substitution for Cu in tetragonal perovskite La_{6.4}Sr_{1.6}Cu₈O₂₀, 115, 469 PbFe₃(P₂O₇)₂, crystal structure, **118**, 202 (Sr[Fe(CN)₅NO] · 4H₂O), crystal structure, determination by X-ray diffraction, 120, 1 substituted γ -nickel oxyhydroxides, iron oxidation state in, analysis, 114, 6 ThFe₅P₃, crystal structure, 117, 80 Th₄Fe₁₇P₁₀O_{1-x}, crystal structure, 117, 80 $TIV_{5-y}Fe_yS_8$ (y = 0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, **119**, 147 $Tm_2Fe_2Si_2C$, preparation, structure refinement, and properties, **114**, 66 $U_2Fe_{17-x}M_xC_y$ (M=Al,Si, and Ge), magnetic properties, **115**, 13 YBaCoCu_{1-x}Fe_xO₅, magnetic behavior, 115, 514 YBaCuFeO₅, crystal and magnetic structure, 114, 24 YCa₂SbFe₄O₁₂, magnetic ordering, 115, 435 Isokinetic relationships in thermal decomposition of solids, analysis by isoconversional methods for analysis, 114, 392 # K ### Kinetics Bi₂Sr₂CaCu₂O₈ synthesis, 116, 314 and dissolution mechanism, quartz in concentrated basic media (NaOH,KOH,LiOH), effect of solvents, 118, 254 MoO₃ reduction, 118, 84 Pb₁₀(PO₄)₆(OH)₂, nucleation, analysis by X-ray and IR, 116, 8 #### L ### Lactose mediated synthesis of β -Co(OH)₂, 114, 550 #### Lanthanum BaLaCoRuO₆, structural and electronic properties, 114, 174 BiLa₂O_{4.5}, average structure and superstructure, X-ray powder and electron diffraction studies, 116, 72 Bi₃La₅O₁₂, related phases, synthesis and characterization, 116, 68 (Ca_{0.9}La_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, **120**, 105 Cs₃LaCl₆ · 3H₂O, thermal dehydration and crystal structure, 116, 329 Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}La_rCuO_{4+δ}, synthesis and characterization, **116**, 347 KMgLa(PO₄)₂ doped with Eu, optical and structural investigation, **114**, 282 LaAgSb₂ with HfCuSi₂-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 LaT_2Al_{20} (T = Ti,Mo,W), with $CeCr_2Al_{20}$ -type structure, 114, 337 La₄BaCu₅O₁₂, insulating, prepared by reduction of metallic La₄Ba Cu₅O_{13.1}, analysis, 114, 95 La₂Ba₂Cu₂Sn₂O₁₁, high-temperature transport and defect studies, 119, 80 $La_2Ba_2Cu_2Ti_2O_{11}$, high-temperature transport and defect studies, 119, 80 La₂Ba₂Cu₂Ti₂O₁₁₋₆, synthesis, structure, and superconductivity, 119, $La_{1-x}Ca_xCrO_{3-\delta}$, chemical diffusion, 115, 152 La_{2-x}Ce_xCuO₄, oxygen variations, effect of internal stress, analysis by thermogravimetry, **114**, 491 LaCo₁₋₁Cr₂O₃, reduction and reoxidation properties, 119, 271 LaCo_{0.2}Fe_{0.8}O₃₋₅, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, **118**, 117 LaCoO₃, magnetic and transport properties, 116, 224 LaCoRuO₆, structural and electronic properties, 114, 174 LaCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 La₅Cu₅O_{13.35}, crystal structure, determination by high-resolution synchrotron X-ray diffraction, 118, 170 La₂CuO₄-Nd₂CuO₄, superconductivity, after treatment under oxidizing conditions, 115, 540 La₂MIrO₆ (M = Mg,Co,Ni,Zn), structure and magnetic properties, 116, 199 La_{0.5}Li_{0.5}TiO₃, microstructural study, 118, 78 LaMn₁₁C_{2-x}, preparation, structure refinement, and properties, **114**, 66 La_{1-x}MnO₃₋₆, self-doped thin films, giant magnetoresistance, **117**, 420 La_{1-x}A_xMnO₃, giant magnetoresistance in bulk samples with A = Sr or Ca, letter to editor, 114, 297 in samples with $A={\rm Ca,Sr,Ba,Pb}$, effect of internal pressure and analysis of related properties, letter to editor, 120, 204 LaMnO₃ crystal structure at room temperature and at 1273 K under N_2 , 119, 191 electrochemical synthesis and ferromagnetism, 114, 294 LaMnO₃₊₈ perovskite-type solid solutions, structural behavior, 114, 516 powder annealed in air, surface characterization, 119, 164 synthesized with poly(acrylic acid), surface characterization, 116, 343 LaMo_{8-x}O₁₄ (x = 0 and 0.3), containing isolated Mo₈ clusters, electrical and magnetic properties, 117, 261 $La_xMo_6S_8$, amorphous precursors for low-temperature preparation, 117, 269 LaNbO₄, relationship between covalence and displacive phase transition temperature, 116, 28 La₃NbO₇, structural analysis, 116, 103 $(La_{1-x}Nd_x)CrO_3$ (0 $\le x \le 1.0$), electrical properties and crystal structure, relationship, 114, 236 $\text{La}_{1-x}A_x\text{NiO}_3$ (A = Sr,Th; $0 \le x \le 0.1$), hole and electron doping, 116, 146 LaNiO₃, preparation by sol-gel process, 116, 157 La₄Ni₃O_{10-δ}, synthesis, structure, and properties, 117, 236 $LaBO_3$ (B = Cr,Mn,Fe,Co), oxygen ion migration, 118, 125 La_2O_3 cation array structure, 119, 131 monoclinic, identity with La_{9,33}(SiO₄)₆, 120, 38 La₂O₂CN₂, synthesis and crystal structure, 114, 592 La₂O₃-Mn₂O₃, phase diagram, 114, 516 LaPd₃As₂
arsenides, preparation, 115, 37 LaPd₂O₄, synthesis, 114, 206 La₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 α-LaS₂, β-LaS₂, and LaSe₂, synthesis by moderate temperature solidstate metathesis, 117, 318 La_{9,33}(SiO₄)₆, identity with monoclinic La₂O₃, **120**, 38 La_{1-x}Sr_xCoO₃₋₆ magnetic and transport properties in samples with $0 < x \le 0.50$, 118, 323 solid solutions, oxide ion conduction, 120, 128 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-v}$ (M = Co,Fe), synthesis, 119, 260 La_{1-x}Sr_xCuO₃, perovskite lattice, mixed valence Cu(III)/Cu(IV) in, stabilization under high oxygen pressure, **114**, 88 La_{6.4}Sr_{1.6}Cu₈O₂₀, ordered substitution of iron for copper, 115, 469 $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta},$ oxygen content and structure relationship, 115, 490 LaSrFeO₄, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456 LaSrGa_{1-x}Ni_xO_{4-δ}, mixed valent oxide ceramic, superconducting properties, **116**, 355 $La_{0.8}Sr_{0.2}MnO_3$ La/Sr vacancy defects, imaging by HREM, 114, 211 ordered La(Sr)-deficient nonstoichiometry in, analysis by HRTEM, 120, 175 La_{1-x}Sr_{1+x}NiO_{4-δ}, mixed valent oxide ceramic, superconducting properties, **116**, 355 $MLaTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 LaTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, **120**, 43 La_{1.2}Tb_{0.8}CuO_{4+δ}, with T* structure, conducting properties and structure, 115, 332 LaTe₃, synthesis by moderate temperature solid-state metathesis, 117, 318 La₄Ti₃S₄O₈, synthesis and characterization, 114, 406 La₆Ti₂S₈O₅, synthesis and characterization, 114, 406 La₂₀Ti₁₁S₄₄O₆, preparation and crystal structure determination, 120, 164 La_xW₆S₈, amorphous precursors for low-temperature preparation, 117, 269 Na₃La₂(CO₃)₄F:Eu³⁺, optical properties, correlation to crystallographic structure, **116**, 286 Sr_{1-x}La_xTiO_{3+0.5x}, layer structure, determination by high-resolution electron microscopy, **117**, 88 $Sr_3La_2Ti_2O_{10}$, preparation and characterization, 119, 412 Laser irradiation effect on properties of transition metal oxides, letter to editor, 118, 417 Lattice dynamics actice dynamics AGa_2X_4 (A = Cd,Hg; X = S,Se), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, **114**, 442 spinel-type $A\operatorname{Cr}_2 X_4$ ($A = \operatorname{Cd}, \operatorname{Co}, \operatorname{Hg}, \operatorname{Zn}; X = \operatorname{S}, \operatorname{Se}$), 118, 43 Lead (Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-δ}, with (NH)₄FeF₆ structure type, powder X-ray and neutron diffraction analysis, **115**, 197 Bi_{1.8}Pb_{0.4}Sr₂Ca₂Cu₃O_{10+δ}, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120 Ca_{10-x-y}Cd_xPb_y(PO₄)₆(OH)₂, solid solutions, analysis by X-ray and IR spectroscopy, **116**, 8 -calcium, hydroxyapatite, cation effects in oxidative coupling of methane, 114, 138 (Ca_{0.9}Pb_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, 120, 105 $(Hg_{1-x}Pb_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$, synthesis and characterization, **115**, 525 $PbCo_3(P_2O_7)_2$, crystal structure, **118**, 202 Pb₂Cu(II)₇(AsO₄)₆ and Pb₂Cu(I)₂Cu(II)₆(AsO₄)₆, topologically related crystal structures, **114**, 413 PbFe₃(P₂O₇)₂, crystal structure, 118, 202 PbF₂/GeO₂/WO₃, glass doped with Tm³⁺ and Tm³⁺/Tb³⁺, blue upconversion emission, **115**, 71 $Pb_{1-x}In_xTe$ (x = 0.56), oxidation states, 116, 33 Ln_{1-x} Pb_xMnO₃ (Ln = rare earths), magnetoresistance and related properties, effect of internal pressure, letter to editor, **120**, 204 $Pb_xMo_5S_8$, amorphous precursors for low-temperature preparation, 117, 269 α -PbO, electronic lone pair localization and electrostatic energy calculations, **114**, 459 PbO-based glasses, OH-containing, applications to MOS devices, mechanism, 120, 54 Pb₃O₄, electronic lone pair localization and electrostatic energy calculations, **114**, 459 PbO-ZrO₂, solution derived powders, homogeneity problems in, 117, 343 Pb₄(PO₄)₂CrO₄, phase transformation, 116, 179 Pb₁₀(PO₄)₆(OH)₂, nucleation kinetics, analysis by X-ray and IR spectroscopy, **116**, 8 $Pb_{2-x}Ln_xRu_2O_{7-y}$ (Ln = Nd,Gd), synthesis, crystal structure, and electrical properties, **114**, 15 Pb_{1-x}(TiO)_xO, electronic lone pair localization and electrostatic energy calculations, **114**, 459 Pb₃(V,P)₂O₈, electronic lone pair localization and electrostatic energy calculations, **114**, 459 Pb_xW₆S₈, amorphous precursors for low-temperature preparation, 117, 269 Leapfrog thermodynamics Sm-Co systems, binary magnetic phases competing for stability, leapfrog thermodynamics, 116, 92 Lithium Ba₄LiCuO₄(CO₃)₂, electronic and vibrational spectra, 119, 359 Co-Li₂CO₃, phase composition, microstructure, and sintering, *erratum*, **116**, 15; **117**, 433 La_{0.5}Li_{0.5}TiO₃, microstructural study, 118, 78 Li, insertion characteristics in CuNb₂O₆, 118, 193 $A \text{Li}_2 X_4$ (A = Mg,Mn,Zn; X = Cl,Br), nonceramic preparation techniques, 117, 34 Li₃AsO₄, guest ion vibrational behavior, 115, 83 Li₂Ca₂Si₅O₁₃, crystal structure determination, **114**, 512 LiCoO₂, synthesis and thermal stability, 117, 1 $LiCuO_2$, symmetry, analysis by X-ray and neutron diffraction measurements, 114, 590 Li_{0.5}(FeCr)_xGa_{2.5-2x}O₄ and Li_{0.5}Fe_xGa_{2.5-x}O₄, tetrahedral $3d^5$ and $3d^5$ or $3d^3$ octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, **120**, 244 LiF-ZrF₄ phase diagram, reanalysis with Li₄ZrF₈ and Li₃Zr₄F₁₉ crystal structures, **120**, 187 $\text{Li}_{1-x}H_x\text{IO}_3$, protons, localization by single-crystal neutron diffraction, 115, 309 Li(H₂O)₄B(OH)₄ · 2H₂O, crystal structure and dehydration process, 115, 549 LiMn₂O₄, and Li_{1-x}Mn₂O₄, as 4-V Li-cell cathodes, differences in electrochemical behavior, letter to editor, **119**, 216 Li₄Mn₅O₁₂, preparation and crystal structure refinement by Rietveld method. 115, 420 LiMoOP₂O₇, synthesis and structure determination, 120, 260 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$ (0.23 $\leq x + y \leq$ 0.37), bronzes obtained from sol-gel process, **118**, 10 LiNbO₃, MgO-doped, defect structure model, 118, 148 LiNb(OH)OPO₄, structural analysis by XRD and EXAFS, 114, 317 $LiAO_3$ (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 LiOH, concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254 Li_{2.88}PO_{3.73}N_{0.14}, with γ-Li₃PO₄ structure, synthesis, crystal structure, and ionic conductivity, **115**, 313 LiTaO₃, impedance spectroscopy, 116, 185 Li_{0.8}VO₂ single crystals, superstructure analysis, 114, 184 $LiM^{III}(WO_4)_2$ ($M^{III} = Bi,Cr$), vibrational properties, 117, 177 δ_l -LiZnPO₄, preparation, structure determination, and thermal transformation, 117, 39 LiZnPO₄, structure determination by ab initio methods, 114, 249 LiZnPO₄ · H₂O, light-atom positions in, location by powder neutron diffraction, 114, 249 Li₃Zr₄F₁₉, crystal structure and reanalysis of LiF–ZrF₄ phase diagram, **120**, 187 Li₄ZrF₈, crystal structure and reanalysis of LiF-ZrF₄ phase diagram, 120, 187 Lithium cells lamellar MnO2 synthesis and characterization for, 120, 70 Luminescence Ba₂TiO₄, with titanate tetrahedra, 118, 337 Fe-doped with willemite single crystals, 117, 16 Lutetium $Ba_{5-y}Sr_yLu_{2-x}Al_2Zr_{1+x}O_{13+x/2}$, structural study, 118, 180 Bi₃Lu₅O₁₂, related phases, synthesis and characterization, 116, 68 Lu₆ T_4 Al₄₃ (T = Ti,V,Nb,Ta), with Ho₆Mo₄Al₄₃-type structure, preparation, **116**, 131 Lu₂Fe₂Si₂C, preparation, structure refinement, and properties, 114, 66 Lu₂Ba₂CuPtO₈, synthesis and characterization, **120**, 316 LuCuAs₂, with HfCuSi₂-type structure, preparation, **115**, 305 LuNbO₄, relationship between covalence and displacive phase transition temperature, 116, 28 Lu₂O₃, cation array structure, 119, 131 $Ln_2MCo_2O_7$ (Ln = Sm,Gd; M = Sr,Ba), 114, 286 $(Cr_{1-x}Fe_x)_3Te_4$, 120, 49 ``` Lu₃O₂F₅, synthesis and crystal structure, 119, 125 Cr₂Sn₃Se₇, 115, 165 MLuTa_6Br_{18} (M = K,Rb,Cs), crystal structure, 118, 274 CuNd₂Ge₂O₈, 120, 254 M_2LuTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal struc- InMnO₃, 116, 118 ture, 120, 43 LaCoO₃, 116, 224 M'-LuTaO₄, synthesis and characterization, letter to editor, 118, 419 La_2MIrO_6 (M = Mg,Co,Ni,Zn), 116, 199 α-LuZr₃F₁₅ series, cationic distribution, 118, 389 LaMo_{8-x}O_{14} (x = 0 and 0.3) containing isolated Mo₈ clusters, 117, 261 La_{1-x}Sr_xCoO_{3-\delta} (0 < x \le 0.50), 118, 323 М Lu₂Fe₂Si₂C, 114, 66 (Mn_xZn_{1-x})(OH)(NO_3)H_2O (x = 0.53,1.00), 118, 28 Magnesium NaM_x^{IV}(Ti,Zr)_{2-x}(PO_4)_3 (M = Nb,Mo; 0 \le x \le 1), 114, 224 CaMg2Al16O27 Nd_{1-x}A_xTiO_3 (A = Ca,Sr,Ba; 0 \le x \le 1), 114, 164 phase relationships in CaO-Al₂O₃-MgO system, 120, 358 (Ni_1-xMg_x)_6MnO_8, 118, 112 structure refinement, 120, 364 Ln_4Ni_3O_{10-\delta} (Ln = La,Pr,Nd), 117, 236 Ca₂Mg₂Al₂₈O₄₆ MP_2O_7 (M = Mo,W), 115, 146 phase relationships in CaO-Al₂O₃-MgO system, 120, 358 Sr_vBa_{1-v}PrO₃, 119, 405 structure refinement, 120, 364 Sr_3MIrO_6 (M = Ni,Cu,Zn), 117, 300 CaO-Al₂O₃-MgO system, Al-rich part, phase relationships, 120, 358 Sr₃Ru₂O₇, 116, 141 KMgLa(PO₄)₂ doped with Eu, optical and structural investigation, Sr₃V₂O_{6.99}, 118, 292 114, 282 TiZn₁₆, 118, 219 La₂MgIrO₆, structure and magnetic properties, 116, 199 Ti₃Zn₂₂, 118, 219 MgB_2X_4 (B = Li,Na;X = Cl,Br), nonceramic preparation techniques, TlV_{5-y}Fe_yS_8 (y = 0.5-1.5), 119, 147 117, 34 Tm2Fe2Si2C, 114, 66 MgHOP₄ · 0.78H₂O, ambient pressure and temperature synthesis, U, Np, and Pu NaCl-type compounds, 115, 66 114, 598 U₃Co₄Ge₇, 115, 247 (Mg,Na,Al)₂(Al,Zn)₃, crystal structure, 115, 270 U_2 Fe_{17-x} M_x C_y (M = Al,Si, and Ge), 115, 13 MgO, crystalline structure, preparation by sol-gel technique with dif- U₃Ni_{3,34}P₆, 116, 307 ferent hydrolysis catalysts, 115, 411 A_2V_4O_9, (A = Rb,Cs),
115, 174 Mg(OH)2-SiO2, mixtures, surface changes in basicity and species, role Magnetic recording of mechanical activation, 115, 390 synthesis of BaFe_{12-2x}Co_xTi_xO₁₉ (0 < x < 1) for, 115, 347 MgO-MgCl₂-H₂O, chemical reactions, analysis by time-resolved syn- Magnetic structure chrotron X-ray powder diffraction, 114, 556 YBaCuFeO₅, 114, 24 NaCa₂Mg₂²⁺ (AsO₄)₃, structure, 118, 267 Magnetic susceptibility (Ni_{1-x}Mg_x)₆MnO₈, crystal structure and magnetic properties, 118, 112 BaCuO_{2+x}, 119, 50 Sr₂MgIrO₆, preparation and stabilization by high oxygen pressure, Bi₂Fe_{4-x}Al_xO₉, 114, 199 115, 447 Co₂Cd₁₋₂In₂S₄ spinel solid solutions, 114, 524 Magnetic behavior Cu₂(OH)₃NO₃, 116, 1 Ba_2M_2F_7Cl and Ba_2MM'F_7Cl (M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+}), ACu_7S_4 (A = Tl,K,Rb), 115, 379 115, 98 \alpha-,\beta-, and \gamma-Fe₂WO₆ phases, analysis at low temperatures, 120, 216 YBaCoCu_{1-x}Fe_xO₅, 115, 514 Mn₃Al_{2-x}Cr_xGe₃O₁₂, 118, 261 Magnetic ordering Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta} \ (0 \le \delta \le 1), 117, 48 CuCrP₂S₆, 116, 208 Mn₂OBO₃, 114, 311 long-range, CuSb₂O₆, confirmation, 118, 199 Mn_xTaS₂, intercalation compounds, 114, 1 YCa₂SbFe₄O₁₂, 115, 435 Nb₃SBr₇, 120, 311 Magnetic phases (NH₄)₂V₃O₈ fresnoite-type vanadium oxides, 114, 499 binary, Sm-Co systems, competing for stability, leapfrog dynamics, rare-earth (Pr,Nd,Eu) mixed oxides, effect of crystal field, 114, 52 116, 92 Magnetoresistance, see also Giant magnetoresistance Magnetic properties La_{1-x}A_xMnO_3 (A = Sr or Ca), letter to editor, 114, 297 REAgSb_2 (RE = Y,La-Nd,Sm,Gd-Tm), 115, 441 Manganese AAs_2O_6 (A = Mn,Co,Ni), 118, 402 (AgIn)_{2(1-z)}(MnIn_2)_zTe_4, alloys, T(z) diagram and optical energy gap M_2As_2O_7 (M = Ni,Co,Mn), 115, 229 values, 114, 539 BaCe_yPr_{1-y}O₃, 119, 405 Ag₂MnGeTe₄, crystal symmetry, 115, 192 Ba_3Cr_2MO_9 (M = Mo, W), 120, 238 AgMn₃(PO₄)(HPO₄)₂, synthesis and structure, 117, 206 BaCu₂S₂, 117, 73 Ba_2MnM'F_7Cl\ (M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}), synthesis, magnetic α-BaCu₄S₃, 117, 73 behavior, and structural study, 115, 98 BaFe_{12-2x}Ir_xMe_xO₁₉ (Me = \text{Co,Zn}; x \sim 0.85 and x \sim 0.50), 120, 17 Ba₂Mn₂F₂Cl, synthesis, magnetic behavior, and structural study, 115, 98 Ba₂Fe₂Ti₄O₁₃, 120, 121 BaMnO_{3-v} (0.22 \leq y \leq 0.40), ordering and defects, 117, 21 BaPrO₃, 119, 405 (Ca_{0.9}M_{0.1})MnO_3 (M = Y,La,Ce,Sm,In,Sn,Sb,Pb,Bi), electrical trans- BaTa₂S₅, 116, 392 BaVO(PO₄)(H₂PO₄) · H₂O, 118, 241 port properties and high-temperature thermoelectric performance, 120, 105 Ca₃CoN₃, 119, 161 Eu₃Ba₂Mn₂Cu₂O₁₂ intergrowth between 123 and 0201 structures, 115, 1 CeVO₃, 119, 24 InMnO₃, synthesis, structure, and magnetic properties, 116, 118 CH₃NH₃SnI₃, 114, 159 Co_xCu_{1-x}Fe_2O_4 (0 \leq x < 0.3), erratum, 117, 64; 117, 433 La_{1-x}A_xM\pi O_3 (A = Sr or Ca), bulk samples, giant magnetoresistance, ``` letter to editor, 114, 297 La_{1-x}MnO_{3-δ}, self-doped thin films, giant magnetoresistance, 117, 420 La_2O_3 - Mn_2O_3 , phase diagram, 114, 516 $LaMnO_3$ crystal structure at room temperature and at 1273 K under N_2 , 119, 191 electrochemical synthesis and ferromagnetism, 114, 294 oxygen ion migration, 118, 125 LaMnO_{3+δ} perovskite-type solid solutions, structural behavior, **114**, 516 powder annealed in air, surface characterization, **119**, 164 synthesized with poly(acrylic acid), surface characterization, **116**, 343 La_{0.8}Sr_{0.2}MnO₃ La/Sr vacancy defects, imaging by HREM, 114, 211 ordered La(Sr)-deficient πonstoichiometry in, analysis by HRTEM, 120, 175 LiMn₂O₄, and Li_{1-x}Mn₂O₄, as 4-V Li-cell cathodes, differences in electrochemical behavior, letter to editor, 119, 216 Li₄Mn₅O₁₂, preparation and crystal structure refinement by Rietveld method, 115, 420 mixed valent oxide ceramics, superconducting properties, 116, 355 MnB_2X_4 (B = Li,Na;X = Cl,Br), nonceramic preparation techniques, 117, 34 $Mn_3Al_{2-x}Cr_xGe_3O_{12}$, X-ray absorption spectroscopic and magnetic analysis, 118, 261 Mn₄As₃, synthesis, crystal structure, and relation to other manganese arsenides, 119, 344 MnAs₂O₆, structural and magnetic properties, 118, 402 Mn₂As₂O₇, magnetic properties and structures, 115, 229 $Mn_3B_7O_{13}Br$, high-temperature single crystal X-ray diffraction, 120, 60 $Mn_3B_7O_{13}I$, high-temperature single crystal X-ray diffraction, 120, 60 $[Mn(H_2O)]1/4(VO)3/4PO_4 \cdot 2H_2O$, synthesis, characterization, and intercalation of vanadyl phosphate with manganese, 116, 400 $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$ (0 $\leq \delta \leq 1$), synthesis, structure, and magnetic susceptibility, 117, 48 $MnO_2,$ from thermal decomposition of NaMnO_4, synthesis and characterization, 120, 70 $Ln_{1-x}A_x$ MnO₃ (Ln = rare earths; A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204 Mn₂OBO₃, synthesis, crystal structure, band calculations, and magnetic susceptibility, 114, 311 Mn_xTaS_2 , intercalation compounds, physical properties and homogeneity range, 114, 1 $Mn_2VO(PO_4)_2 \cdot H_2O$, hydrothermal synthesis and structure, 115, 76 $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$ (x = 0.53,1.00), synthesis and characterization, 118, 28 NaMnO₄, lamellar MnO₂ from, thermal decomposition synthesis and characterization for rechargeable lithium cells, **120**, 70 NaMn₃(PO₄)(HPO₄)₂, synthesis and structure, 115, 240 $Nd(Cr_{1-x}Mn_x)O_3$ ($0 \le x \le 0.6$), cation-anion-cation overlap and electrical properties, relationship, 118, 367 NdMnO_{3+y}, crystal and defect structure and oxygen nonstoichiometry, 118, 53 (Ni_{1-x}Mg_x)₆MnO₈, crystal structure and magnetic properties, 118, 112 PrMnO_{3+y}, crystal and defect structure, and oxygen nonstoichiometry, 118, 53 PrMnOGeO₄, preparation and crystal structure, 120, 7 $Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta},$ effects of spectacular giant magnetoresistance, 117, 424 Sr₅Mn₄CO₃O₁₀, synthesis and structure, 120, 279 SrMnO_{3-x} electronic properties, 114, 242 $Zn_{1-z}Mn_zGa_2Se_4$, energy gap values and T(z) diagram, 115, 416 Mathematical analysis rod packings, 114, 42 Mechanical activation effect on basicity and species on surface of Me(OH)₂-SiO₂ (Me = Ca,Mg,Sr) mixtures, 115, 390 Mercury BaHgRuO₅, synthesis and structure, 120, 223 $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$ (M = Cu,Pr), synthesis and crystal structure, 114, 230 HgBiSr₇Cu₂SbO₁₅, double cationic ordering, 116, 53 $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}La_rCuO_{4+\delta}$, synthesis and characterization, 116, 347 $HgCr_2Se_4$, lattice dynamics, 118, 43 $HgGa_2X_4$ (X = S,Se), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, 114, 369 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$, synthesis and characterization, 115, 525 Hg_{1-x}Tl_xSr_{4-y}Ba_yCu₂CO₃O_{7-δ}, modulated superconducting oxides, structural aspects, **120**, 332 Metal-insulator transition EuNiO₃, 120, 170 Sm_{1-x}Nd_xNiO₃, **120**, 157 Metathesis solid-state, moderate temperature, in synthesis of rare-earth polychalcogenides, 117, 318 Methane oxidative coupling cation effects of lead-calcium hydroxyapatite, 114, 138 Microdomains associated with defect fluorite to C-type sesquioxide transition in $(1 - x)\text{CeO}_2 \cdot x\text{YO}_{1.5}$ and $(1 - x)\text{ZrO}_2 \cdot x\text{RO}_{1.5}$ (R = Ho, Dv,Tb,Gd), 120, 290 Microstructure Co-Li₂CO₃, erratum, 116, 15; 117, 433 fumed titanium dioxide photocatalyst, 115, 236 La_{0.5}Li_{0.5}TiO₃, 118, 78 Mixed crystals binary, thermodynamics in sub-quasi-chemical/Debye approximation, 115, 368 Modulation waves in analysis of cubic stabilized zirconias, disordered structure, 115, 43 Molybdenum Ba₃Cr₂MoO₉, structure and magnetic properties, 120, 238 BaMo₄O₁₃·2H₂O, hydrothermal synthesis and crystal structure, **116**, 95 BaMo(PO₄)₂, with yavapaiite layer structure, synthesis and characterization, **116**, 364 Bi₂MoO₆, phase transitions, structural changes in, analysis, letter to editor, 119, 210 $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$, crystal structure, determination from powder data, 117, 103 Cs₉Mo₉Al₃P₁₁O₅₉ with tunnel structure, isolation, **114**, 451 CsMo₂O₃(PO₄)₂, mixed valent monophosphate with layer structure, 116, 87 Fe-Mo-O catalysts, reduction behavior, analysis by TPR with in situ Mössbauer spectroscopy and X-ray diffraction, 117, 127 GaMo₄S₈-type compounds, tetrahedral clusters: metal bonding analysis, **120**, 80 $Ho_6Mo_4Al_{43}$, related structure of $A_6T_4Al_{43}$ (A = Y,Nd,Sm,Gd-Lu,U; T = Ti,V,Nb,Ta), 116, 131 HoSr₂Cu_{2.7}Mo_{0.3}O_{7.54}, synthesis and crystal structure, 119, 115 KMo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 KMo₄O₆, analysis of tetragonal forms, 117, 217 K₂Mo₂O₁₀ · 3H₂O, crystal structure, determination by direct method/ powder diffraction package, 115, 225 β -K₂Mo₂O₄P₂O₇, tunnel structure, **114**, 481 K₃(Mo)₄(PO₄)₅ with tunnel structure, 114, 61 LaMo_{8-x}O₁₄ (x = 0 and 0.3), containing isolated Mo₈ clusters, electrical and magnetic properties, **117**, 261 LiMoOP₂O₇, synthesis and structure determination, 120, 260 Mo-Bi-O system, structural modeling, letter to editor, 119, 428 MoO₃-II, soft chemical synthesis, 119, 199 MoO₃, reduction, kinetics and mechanism, 118, 84 M_2 MoO₄ ($M = Na, NH_4, Ag$), hydrothermal preparation, structure, and reactivity, **117**, 323 MoP₂O₇, synthesis and magnetic and electrical properties, 115, 146 M_x Mo₆S₈ (M = Sn,Co,Ni,Pb,La,Ho), amorphous precursors for low-temperature preparation, 117, 269 AMo_2Al_{20} (A = La, Ce, Pr, Nd, Sm, Eu, U), with $CeCr_2Al_{20}$ -type structure, 114. 337 Mo_{7.6}W_{1.4}O₂₅, crystal structure, 119, 8 Na₃(MoO)₄(PO₄)₅, tunnel structure and synthesis, 114, 543 $Na_{0.75}Mo_{1.17}W_{0.83}O_3(PO_4)_2$, synthesis and crystal structure, 120, 353 NaNb_x^{IV}(Ti,Zr)_{2-x}(PO₄)₃ ($0 \le x \le 1$), crystal, magnetic, and electrical
properties, **114**, 224 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$, synthesis and structure, 119, 176 NH₄Mo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 $(NH_4)_2Mo_3O_{10} \cdot H_2O$, crystal structure, determination by powder diffraction, 116, 422 $(NH_4)_6[TeMo_6O_{24}]$ · $Te(OH)_6$ · $7H_2O$, single crystals, infrared and polarized Raman spectra, 118, 341 Slater functions, formulation by distance between subspaces, 116, 275 $M_6[\text{TeM}_{06}\text{O}_{24}] \cdot 7\text{H}_2\text{O}$ ($M = \text{K,NH}_4$), single crystals, infrared and polarized Raman spectra, 118, 341 V-Mo-O-N, synthesis by temperature-programmed reaction, **116**, 205 Monochalcogenides TiS, VS, TiSe, and VSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346 Mössbauer spectroscopy CO₂ decomposition to carbon, analysis with Ni_{0.39}Fe_{2.61}O₄₋₈, **120**, 64 in situ, and X-ray diffraction, TPR with, in analysis of Fe-Mo-O catalysts, **117**, 127 ¹¹⁹Sn, in analysis of bonding in Zintl phases, 118, 397 $TlV_{5-y}Fe_yS_8$ (y = 0.5-1.5), **119,** 147 Multipole expansions crystal field potential, ReB_a^k -Im B_a^k , parameter ratio quality, 115, 92 N Nasicon structure $\operatorname{Na}_{x}^{\operatorname{IV}}(\operatorname{Ti},\operatorname{Zr})_{2-x}(\operatorname{PO}_{4})_{3}$ $(M = \operatorname{Nb},\operatorname{Mo}; 0 \le x \le 1)$, crystal, magnetic, and electrical properties, **114**, 224 Neodymium Bi₃Nd₅O₁₂, related phases, synthesis and characterization, **116**, 68 Cs₃NdCl₆ · 3H₂O, thermal dehydration and crystal structure, **116**, 329 CuNd₂Ge₂O₈, crystal structure, growth, and magnetic and spectroscopic properties, **120**, 254 $(La_{1-x}Nd_x)CrO_3$ $(0 \le x \le 1.0)$, electrical properties and crystal structure, relationship, **114**, 236 NdAgSb₂ with HfCuSi₂-type structure, preparation, **115**, 305 magnetism and crystal structure, **115**, 441 NdT_2Al_{20} ($T = Ti_1Mo_1W$), with $CeCr_2Al_{20}$ -type structure, 114, 337 $Nd_6T_4Al_{43}(T=Ti,V,Nb,Ta)$, with $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131 NdBa₂Cu₃O_{7-y}, FT-IR skeletal study, 119, 36 Nd₂Ba₂Cu₂Ti₂O_{11-δ}, synthesis, structure, and superconductivity, 119, Nd_{1-x}Ca_xFeO_{3-y}, nonstoichiometry and physical properties, analysis, 114. 265 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$, 120, 146 Nd2-xCexCuO4 FT-IR skeletal study, 119, 36 oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491 $Nd(Cr_{1-x}Mn_x)O_3$ (0 $\le x \le 0.6$), cation-anion-cation overlap and electrical properties, relationship, 118, 367 NdCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 Nd₂CuO₄-Nd₂CuO₄, superconductivity, after treatment under oxidizing conditions, **115**, 540 $Nd_{1-x}A_xMnO_3$ (A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, **120**, 204 NdMnO_{3+y}, crystal and defect structure and oxygen nonstoichiometry, 118, 53 $Nd_{1-x}A_xNiO_3$ ($A = Sr,Th; 0 \le x \le 0.1$), hole and electron doping, 116, 146 NdNiO₃ electrochemical synthesis and ferromagnetism, 114, 294 $Nd_4Ni_3O_{10-\delta}$, synthesis, structure, and properties, 117, 236 NdAO₄ (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 Nd₂O₃, cation array structure, 119, 131 Nd₂O₃-Pr₆O₁₁-CuO, phase relations, 115, 291 $Nd_{1-x}Sr_xCoO_{3-\delta}$ solid solutions, oxide ion conduction, 120, 128 $MNdTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 NdTa₆Br₁₈, crystal structure, 118, 274 M_2 NdTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, **120**, 43 $Nd_2(TeO_3)_3$ and Te_4O_{11} , tellurite formation, enthalpy determination, 118, 210 $Nd_{1-x}A_xTiO_3$ ($A = Ca,Sr,Ba; 0 \le x \le 1$), structure, transport, and magnetic properties, **114**, 164 $Pb_{2-x}Nd_xRu_2O_{7-y}$, synthesis, crystal structure, and electrical properties, 114. 15 P₁Pd₃As₂ arsenides, preparation, 115, 37 rare-earth mixed oxide, magnetic susceptibility effect of crystal field, 114, 52 Sm_{1-x}Nd_xNiO₃, preparation and metal-insulator properties, **120**, 157 SrNdGa_{1-x}Mn_xO₄, mixed valent oxide ceramic, superconducting properties, **116**, 355 Sr_{1+x}Nd_{1-x}MnO₄, mixed valent oxide ceramic, superconducting properties, **116**, 355 Neptunium NaCl-type compound, thermodynamic and magnetic properties, 115,66 Neutron diffraction, see also Powder neutron diffraction $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$ compounds with $(NH)_4FeF_6$ structure type, 115, 197 $R_2Cu_2O_5$ (R = Yb,Tm,Er,Y,Ho), 115, 324 LiCuO₂, symmetry, 114, 590 Li_{1-x}H_xIO₃, proton localization, 115, 309 Y₂(Zr_yTi_{1-y})₂O₇, Rietveld analysis of disorder from Zr substitution, 117, 108 Nickel AuNi₂Sn₄, crystal structure, 119, 142 $Ba_2NiM'F_7Cl$ ($M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$), synthesis, magnetic behavior, and structural study, **115**, 98 $Ba_2Ni_2F_7Cl$, synthesis, magnetic behavior, and structural study, **115**, 98 $Ca_{1-x}Sr_xNiN$ ($0 \le x \le 0.5$), solid solutions, preparation, crystal structure, and properties, **115**, 353 EuNiO₃, preparation, crystal structure, and metal-insulator transition, KNiPS₄, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432 La₂NiIrO₆, structure and magnetic properties, 116, 199 LaNiO₃, preparation by sol-gel process, 116, 157 mixed valent oxide ceramics, superconducting properties, 116, 355 NaCa₂Ni₂ (AsO₄)₃, structure, 118, 267 NdNiO₃ electrochemical synthesis and ferromagnetism, 114, 294 Ni ions, location and reducibility in HEU-type zeolites, 114, 108 Ni-Al-M (M = Cr,Fe), synthesis and characterization, 118, 285 NiAs filled structure, GdRuC2 with, 118, 158 NiAs-Ni₂In, intermetallic phases, superstructures in, analysis, 118, 313 NiAs₂O₆, structural and magnetic properties, 118, 402 Ni₂As₂O₇, magnetic properties and structures, 115, 229 NiCo₂O₄, preparation by sol-gel process, 116, 157 $Ni_{0.39}Fe_{2.61}O_{4-\delta}$, in analysis of CO_2 decomposition to carbon, 120, 64 (Ni_{1-x}Mg_x)₆MnO₈, crystal structure and magnetic properties, **118**, 112 Ni_xMo₆S₈, amorphous precursors for low-temperature preparation, **117**, 269 $R_{1-x}A_x \text{NiO}_3$ (R = La,Nd; A = Sr,Th; $0 \le x \le 0.1$), hole and electron doping, **116**, 146 $Ln_4Ni_3O_{10-\delta}$ (Ln = La,Pr,Nd), synthesis, structure, and properties, 117, 236 Ni_{1,282(4)}Si_{1,284(5)}P₃, crystal structure, 114, 476 NiSi₂P₃, crystal structure, 114, 476 NiU₂O₆, antiferromagnetic ordering, 114, 595 $Ni_xW_6S_8$, amorphous precursors for low-temperature preparation, 117, 269 $Sm_{1-x}Nd_xNiO_3$, preparation and metal-insulator properties, **120**, 157 Sr_3NiIrO_6 , structure and magnetic properties, **117**, 300 SrNiN, preparation, crystal structure, and properties, 115, 353 $U_3Ni_{3,34}P_6$, preparation, crystal structure, and physical properties, 116, 307 y-Nickel oxyhydroxides iron-substituted, iron oxidation state in, analysis, 114, 6 BaNb_{0.8}S_{3-δ}, structure and physical properties, 115, 427 BaNbS₃, structure and physical properties, 115, 427 Bi_{2-x}Nb_xO_{3+x}, solid solution, electron diffraction study, 119, 311 (BiS)_{1.11}NbS₂, layered composite crystal structure, 116, 61 (BiS)_{1+ δ}(Nb_{1+ ϵ}S₂)n, misfit layer structures, analysis by TEM and XRD, **115**, 274 CsNbOB₂O₅, synthesis and characterization, 120, 74 CuNb₂O₆, lithium insertion characteristics, 118, 193 Cu_xZn_{1-x}Nb₂O₆, structural relations, 115, 476 (Gd_εSn_{1-ε}S)_{1.16}(NbS₂)₃, crystal structure and synthesis, 114, 435 H_xNb₂O₅, electrochemical investigations, 115, 260 In_xNb₃Se₄, multilayer precursor synthesis, 117, 290 KNB₅GeO₁₆ · 2H₂O, with 2D channel network, 115, 373 La₃NbO₇, structural analysis, 116, 103 LiNbO₃ MgO-doped, defect structure model, 118, 148 relationship between covalence and displacive phase transition temperature, 116, 28 LiNb(OH)OPO₄, structural analysis by XRD and EXAFS, **114**, 317 NaNb_x^{IV}(Ti,Zr)_{2-x}(PO₄)₃ ($0 \le x \le 1$), crystal, magnetic, and electrical properties, **114**, 224 $Nb_6T_4Al_{43}$ (T = Ti, V, Nb, Ta), with $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131 NbN_x , synthesis by pulsed laser desorption and characterization, NbO, TT-Phase, reaction with CCl₄, kinetic mechanism, 117, 379 $RNbO_4$ (R = Y,La-Lu), relationship between covalence and displacive phase transition temperature, **116**, 28 Nb₂O₅, effect of laser irradiation, letter to editor, 118, 417 Nb₂O₅/TiO₂ photocatalysts, surface acidity and photocatalytic activity, **115**, 187 NbP₂O₇h, with cubic structure, preparation, 119, 98 Nb_{2-x}P_{3-y}O₁₂, preparation, composition, and structure, **116**, 335 Nb₃SBr₇, synthesis, crystal structure, and magnetic susceptibility, 120, 311 NbA_xTe_2 (A = Si,Ge; 1/3 $\leq x \leq$ 1/2), origin of short interslab Te-Te contacts in, analysis, 119, 394 Nb₄W₁₃O₄₇, oxidation products, analysis by TEM, 120, 268 $Nb_7W_{10}O_{47}$, oxidation products, transmission electron microscopy analysis. 119, 420 Slater functions, formulation by distance between subspaces, **116**, 275 SrNb₄O₆, crystal structure, **114**, 301 $Tl_2Nb_2O_{6+x}$ (0 $\leq x \leq 1$) solution, continuous cubic pyrochlore type, **114.** 575 UNb₂Al₂₀, with CeCr₂Al₂₀-type structure, 114, 337 Nitrogen Al₂₈O₂₁C₆N₆, diamond-related compound in system Al₂O₃-Al₄C₃-AlN, identification, 120, 211 $AI_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, synthesis and crystal structure, **120**, 197 $[Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O], \ hydrogen-bonding \ system, \ \textbf{114,} \ 102$ Ba₂ZnN₂, synthesis and crystal structure, 119, 375 Bi₃NF₆, synthesis and structure, 114, 73 BN, crystalline cubic thin films, hot-filament-assisted electron beam deposition, 118, 99 Ca₃CoN₃, preparation, crystal structure, electrical properties, and magnetic properties, 119, 161 -carbon-boron system, properties and preparation, 114, 258
-carbon polymers, high-pressure synthesis, 117, 229 $Ca_{1-x}Sr_xNiN$ (0 $\leq x \leq 0.5$) solid solutions, preparation, crystal structure, and properties, **115**, 353 (Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372 Cd_{2-x}GeO_{4-x-3y}N_{2y}, preparation and characterization, 119, 304 CeK₂(NO₃)₆, double valence change for cerium during thermal decomposition, letter to editor, **115**, 295 (CH₃)₃NCH₂COO · (COOH)₂ · H₂O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129 [n-C₉H₁₉NH₃]₂CuCl₄, characterization by FTIR, 117, 97 $2(C_6H_5NH_3)\cdot Mo_3O_{10}\cdot 4H_2O,$ crystal structure, determination from powder data, 117, 103 CH₃NH₃SnI₃, transport, optical, and magnetic properties, 114, 159 $(C_{18}H_{30}N_3)_2\cdot[Si_8O_{18}(OH)_2]\cdot41H_2O,$ X-ray diffraction and NMR analysis, 120, 231 Cu(C₄H₅N₃)₂Cl₂, synthesis and characterization, **117**, 333 $Cu^{11}(1,4\text{-}C_4H_4N_2)(C_4O_4)(OH_2)_4$, synthesis and structure determination with silica gels, 117, 256 Cu₂(OH)₃NO₃, magnetic behavior and exchange coupling, single crystal study, **116**, 1 La₂O₂CN₂, synthesis and crystal structure, 114, 592 $Li_{2.88}PO_{3.73}N_{0.14}$, with γ - Li_3PO_4 structure, synthesis, crystal structure, and ionic conductivity, **115**, 313 $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$ ($0 \le \delta \le 1$), synthesis, structure, and magnetic susceptibility, 117, 48 $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$ (x = 0.53,1.00), synthesis and characterization, **118**, 28 NbN_x , synthesis by pulsed laser desorption and characterization, 117, 294 $N(CH_3)_4H_2PO_4\cdot H_2O,$ FT-IR and polarized Raman spectra, **120**, 343 $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18}\cdot 2H_2O,$ structural, DSC, and IR analysis, **114**, 42 NH₂HSO₃, analysis by vibrational and surface enhanced Raman scattering, **116**, 217 P₄ON₆, crystal structure, 115, 265 $Sn_4S_9[(C_3H_7)_4N]_2$, preparation and structural characterization, 114, 506 115, 532 Sn₄S₉[(C₃H₇)₄N] · [(CH₃)₃NH], preparation and structural character-Oxygen content variations in Ln_{2-r}Ce_rCuO₄, effect of internal stress, analysis ization, 114, 506 (Sr[Fe(CN)₅NO] · 4H₂O), crystal structure, determination by X-ray by thermogravimetry, 114, 491 diffraction, 120, 1 defects SrNiN, preparation, crystal structure, and properties, 115, 353 effects on strong-metal-support interaction between Pt TiO2(rutile)(110) surface, 119, 237 Sr₂ZnN₂, synthesis and crystal structure, 119, 375 on SrCoO_{3-δ}, effects on electronic states, 119, 76 Ta₂N, formation by air ignition, letter to editor, 119, 207 deficiency in $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta}$, relationship to structure, 115, 490 TaThN₃, synthesis, 120, 378 at high pressure $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}]$, synthesis, crystal structure, and strucperovskite lattice of La_{1-x}Sr_xCuO₃ under, mixed valence Cu(III)/ tural correlations with V₂O₅ and other vanadyl compounds, 120, Cu(IV) in, stabilization, 114, 88 stabilization of V-Me-O-N (Me = Mo,W), synthesis by temperature-programmed mixed valence Cu(III)/Cu(IV) in perovskite lattice of $La_{1-x}Sr_x$ reaction, 116, 205 CuO₃, 114, 88 $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$, cation distribution and coordina- Sr_2MIrO_6 (M = Ca,Mg), 115, 447 tion chemistry, structural and spectroscopic study, 118, 303 in synthesis of BaHgRuO₅, 120, 223 Nonstoichiometry LaFeO₃, ion migration, 118, 125 oxygen nonstoichiometry in NdMnO_{3-v} PrMnO_{3+v}, 118, 53 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$, 119, 120 and Sr, content in Pr_{2-v}Sr_vCuO_{4-δ}, effect on microstructure and phase Bi₂Sr₂CaCu₂O_{8+δ}, 119, 120 stability, 116, 385 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$, 120, 146 stoichiometry in $Sr_3Co_2O_{7-y}$ (0.94 $\leq y \leq 1.22$), **115**, 499 in NdMnO_{3-y} PrMnO_{3+y}, 118, 53 Oxygen coulometry YBa₂Cu₃O_v, measurement by vapor pressure scanning, 119, 62 Y-Cu-O system, analysis, 114, 420 Nuclear magnetic resonance ²⁷Al and ¹³C, Al-O-R-O-Al gels, **119**, 319 P ²⁹Si, magic-angle spinning, in analysis of Cs₄Sb₄O₈(Si_{4(x)}Ge_{41-x}O₁₂) solid solution, 114, 528 Packings $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O$, **120**, 231 rod, see Rod packings Nucleation Palladium Pb₁₀(PO₄)₆(OH)₂ kinetics, analysis by X-ray and IR spectroscopy, 116, 8 CePd_{2-x}As₂, with ThCr₂Si₂ structure, structure refinement, 115, 37 LaPd₂O₄, synthesis, 114, 206 $LnPd_3As_2$ (Ln = La-Nd,Sm,Gd) arsenides, preparation, 115, 37 0 Pd₉Si₂, solubility of deuterium and hydrogen in, 120, 90 Slater functions, formulation by distance between subspaces, 116, 275 Optical analysis -TiO₂ films, photoassisted decomposition of salicyclic acid, 119, 339 KMgLa(PO₄)₂ doped with Eu, 114, 282 Passivation Optical energy gap MOS capacitors, by fluoride-containing ZnO-B2O2-SiO2-P2O5 $(AgIn)_2(1-z)(MnIn_2)_zTe_4$, 114, 539 glasses, OH-related capacitance-voltage recovery effect in, 118, Optical properties BaEu(CO₃)₂, correlation to crystallographic structure, 116, 286 Perovskite lattice CH₃NH₃SnI₃, **114**, 159 La_{1-x}Sr_xCuO₃, mixed valence Cu(III)/Cu(IV) in, stabilization under Co_xCd_{1-x}In₂S₄ spinel solid solutions, 114, 524 high oxygen pressure, 114, 88 copper sulfide films of variable composition, 114, 469 Perovskites Na₃La₂(CO₃)₄F:Eu³⁺, correlation to crystallographic structure, 116, 286 BaCe_vPr_{1-v}O₃, 119, 405 $Zn_{1-z}Mn_zGa_2Se_4$, 115, 416 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln = La-Tb), 119, 224 Ordering BaPrO₃, 119, 405 antiferromagnetic, CoU₂O₆ NiU₂O₆, antiferromagnetic ordering, REBa₂SbO₆ (RE = Pr,Sm,Gd), synthesis and characterization, as sub-114, 595 strates for YBa₂Cu₃O₇₋₈, **116**, 193 BaMnO_{3-y} $(0.22 \le y \le 0.40)$, 117, 21 CaFeTi₂O₆, high-pressure synthesis and crystal structure, 114, 277 cations, in BaBiO2Cl, 117, 201 CeVO₃, magnetic and transport properties, 119, 24 and defect structure, 1201, 1212, and 1222 (Hg,Pr)-Sr-(Sr,Ca,Pr)-CH₃NH₃SnI₃, conducting halide, transport, optical, and magnetic prop-Cu-O superconductors, 114, 369 erties, 114, 159 double cationic, HgBiSr₇Cu₂SbO₁₅, 116, 53 A_1A' CoRuO₆ (A_1A' = Sr,Ba,La), **114**, 174 magnetic, see Magnetic ordering Eu₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, $Si_{1-x}C_x$: H alloys, 117, 427 119,80 Oxidation, see also Reoxidation icosahedral-type, displacive crystallographic phase transition for, Nb₇W₁₀O₄₇, transmission electron microscopy analysis of products, model, 119, 364 **119,** 420 La₂Ba₂Cu₂Sn₂O₁₁, high-temperature transport and defect studies, Oxidation state 119,80 iron, in iron substituted γ-nickel oxyhydroxides, analysis, 114, 6 La₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, $Pb_{1-x}In_xTe (x = 0.56), 116, 33$ LaMnO₃₊₆, perovskite-type solid solutions, structural behavior, 114, 516 $LaBO_3$ (B = Cr,Mn,Fe,Co), oxygen ion migration, 118, 125 and ceramics, effects of ultrasound, macro- and microscopic analysis, $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-v}$ (M = Co,Fe), synthesis, 119, 260 CUMULATIVE La_{6.4}Sr_{1.6}Cu₈O₂₀, tetragonal, ordered substitution of iron for copper, 115, 469 Na_{2/3}Th_{1/3}TiO₃, synthesis, letter to editor, 120, 207 Nd_{1-x}Ca_xFeO_{3-y}, nonstoichiometry and physical properties, analysis, 114, 265 Nd_{1-x}A_xTiO₃ (A = Ca,Sr,Ba; 0 ≤ x ≤ 1), structure, transport, and magnetic properties, 114, 164 phases in Sm_{1-x}Sr_xCuO_{2.5-x/2+δ} PLD thin films, 116, 37 Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-δ}, effects of spectacular giant magnetoresistance, 117, 424 related blocks, Aurivillius phases, Raman modes, temperature and polarization dependence, 114, 112 related compound, Y₂Ba₃Cu₃Co₂O₁₂, synthesis by solid state reaction, 115, 407 $Sm_{1-x}Nd_xNiO_3$, preparation and metal-insulator properties, 120, 157 $Sm_2Sr_6Cu_8O_{17+\delta}$ films, analysis by HREM, 116, 300 SryBa_{1-y}PrO₃, 119, 405 SrCoO_{3-δ}, electronic states, effects of oxygen, 119, 76 Sr_2MIrO_6 (M = Ca,Mg), preparation and stabilization by high oxygen pressure, 115, 447 TaThN₃, synthesis, 120, 378 $Tb_2Ba_2Cu_2Ti_2O_{11}$, synthesis and crystal structure, 117, 213 Phase analysis quantitative X-ray, Y₂BaCuO₅-YBa₂Cu₃O_{6+x}, **116**, 136 Phase behavior solid-phase, $[n-C_9H_{19}NH_3]_2CuCl_4$, characterization by FTIR, 117, 97 Phase composition Co-Li₂CO₃, erratum, 116, 15: 117, 433 NiAs-Ni₂In, intermetallic-type, superstructures in, analysis, 118, 313 Phase diagram $Ag_2S-Ga_2S_3-GeS_2$, analysis by DTA and XRD, 117, 189 $Ag_2SO_4-Tl_2SO_4$, 114, 271 Ce_{0.818}Gd_{0.182}O_{1.909-y}, nonstoichiometric 10 mol%, **117**, 392 $ACI/TbCl_3$ (A = K,Rb,Cs), 115, 484 La₂O₃-Mn₂O₃, 114, 516 LiF-ZrF₄, reanalysis with Li₄ZrF₈ and Li₃Zr₄F₁₉ crystal structures, 120, 187 T(z), $(AgIn)_{2(1-z)}(MnIn_2)zTe_4$, 114, 539 YbI₂-AI (A = Na,K,Rb,Cs) phase diagrams, measurement and calculation, 114, 146 Phase relations Nd₂O₃-Pr₆O₁₁-CuO ternary system, 115, 291 Phase stability $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$ and $Bi_2Sr_2CaCu_2O_{8+\delta}$, 119, 120 Phase transformation Pb₄(PO₄)₂CrO₄, **116**, 179 Zn₂P₂O₇, analysis, 119, 219 Phase transitions Bi₂MoO₆, structural changes in, analysis, letter to editor, **119**, 210 Bi₂Ti₄O₁₁, in situ analysis, **119**, 281 CsHSO₄, 117, 412; 414 $CuS_{1-x}Se_x$ ($0 \le x \le 1$), analysis by X-ray diffractometry, 118, 176 displacive crystallographic, for A15-type superconductor alloys and icosahedral-type perovskites, 119, 364 successive, in ACu_7S_4 (A = Tl,K,Rb), 115, 379 temperature, displacive, RAO_4 and $LiAO_3$, (R = rare earth elements; A = Nb, Ta), relationship with covalence, 116, 28 Phasoids in Sm_{1-x}SrXCuO_{2.5-x/2+δ} PLD thin films, **116,** 37 AgMn₃(PO₄)(HPO₄)₂, synthesis and structure, 117, 206 $AgV_2(PO_4)P_2O_7$, crystal structure determination, **115**, 521 $Al_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, synthesis and crystal structure, **120**, 197 BaMo(PO₄)₂, with yavapaiite layer structure, synthesis and characterization, 116, 364 $BaVO(PO_4)(H_2PO_4) \cdot H_2O$
, synthesis, structure, and magnetism, 118, 241 $Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O$, hydrothermal synthesis and crystal structure, **116**, 77 Ca_{10-x-y}Cd_xPb_y(PO₄)₆(OH)₂, solid solutions, analysis by X-ray and IR spectroscopy, **116**, 8 Ca₁₀(PO₄)₆(OH)₂, induced radiation damage, analysis by TEM, 116, 265 Co₂(OH)PO₄, structure-directing effect of organic additives, **114**, 151 Cs₉Mo₉Al₃P₁₁O₅₉ with tunnel structure, isolation, **114**, 451 CsMo₂O₃(PO₄)₂, mixed valent monophosphate with layer structure, 116, 87 Cs(TiP)O₅, crystal structure, 120, 299 α - and β -CsTi₃P₅O₁₉, synthesis and crystal structure, 115, 120 CuCrP₂S₆, copper disorder, stacking distortions, and magnetic ordering, 116, 208 Cu_{0.5}(OH)_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, **117**, 157 Cu_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, 117, 157 M_2 HPO₄– M_2' HPO₄–H₂O (M,M' = Na,K,NH₄), electrical conductivity measurements, **119**, 68 InPO₄-1, synthesis and characterization, 117, 373 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2~(0 < x < 0.4),$ synthesis and structure, 114, 399 $KH_2PO_4,$ crystal structure, 114, 219 KMgLa(PO₄)₂ doped with Eu, optical and structural investigation, 114, 282 KMo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 β -K₂Mo₂O₄P₂O₇, tunnel structure, **114**, 481 K₃(Mo)₄(PO₄)₅ with tunnel structure, 114, 61 KNiPS₄, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432 LiMoOP₂O₇, synthesis and structure determination, 120, 260 LiNb(OH)OPO₄, structural analysis by XRD and EXAFS, 114, 317 Li_{2.88}PO_{3.73}N_{0.14} with γ -Li₃PO₄ structure, synthesis, crystal structure, and ionic conductivity, **115**, 313 δ_1 -LiZnPO₄, preparation, structure determination, and thermal transformation, 117, 39 LiZnPO₄ · H₂O, light-atom positions in, location by powder neutron diffraction, 114, 249 LiZnPO₄, structure determination by ab initio methods, 114, 249 $MgHOP_4 \cdot 0.78H_2O$, ambient pressure and temperature synthesis, 114, 598 [Mn(H₂O)]_{1/4}(VO)_{3/4}PO₄· 2H₂O, synthesis, characterization, and intercalation of vanadyl phosphate with manganese, **116**, 400 Mn₂VO(PO₄)₂ · H₂O, hydrothermal synthesis and structure, 115, 76 Na₄Al(PO₄)₂(OH), synthesis and characterization, 118, 412 α- and β-Na₂CuP₂O₇, crystal structure, 120, 23 Na₂GdOPO₄, solid-state synthesis, X-ray powder diffraction, and IR data, 120, 275 NaMn₃(PO₄)(HPO₄)₂, synthesis and structure, 115, 240 Na₃(MoO)₄(PO₄)₅, tunnel structure and synthesis, 114, 543 Na_{0.75}Mo_{1.17}W_{0.85}O₃(PO₄)₂, synthesis and crystal structure, 120, 353 $\operatorname{Na}M_x^{\text{IV}}(\operatorname{Ti},\operatorname{Zr})_{2-x}(\operatorname{PO}_4)_3$ ($M=\operatorname{Nb},\operatorname{Mo}; 0\leq x\leq 1$), crystal, magnetic, and electrical properties, 114, 224 NbP₂O₇, with cubic structure, preparation, 119, 98 Nb_{2-x}P_{3-v}O₁₂, preparation, composition, and structure, 116, 335 N(CH₃)₄H₂PO₄ · H₂O, FT-IR and polarized Raman spectra, 120, 343 $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O$, structural, DSC, and IR analysis, **114**, 42 NH₄Mo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 $NH_4Sn_2(PO_4)_3$, hydrothermal synthesis and characterization, 119, 197 $Ni_{1.282(4)}Si_{1.284(5)}P_3$, crystal structure, 114, 476 NiSi₂P₃, crystal structure, 114, 476 PbCo₂(P₂O₇)₂, crystal structure, 118, 202 PbFe₃(P_2O_7)₂, crystal structure, 118, 202 Pb₄(PO₄)₂CrO₄, phase transformation, 116, 179 Pb₁₀(PO₄)₆(OH)₂, nucleation kinetics, analysis by X-ray and IR spectroscopy, 116, 8 Pb₃(V,P)₂O₈, electronic lone pair localization and electrostatic energy calculations, 114, 459 (Po₄)³-, in Li₃AsO₄, vibrational behavior, 115, 83 MP_2O_7 (M = Mo, W), synthesis and magnetic and electrical properties, 115, 146 Ln₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 P₄ON₆, crystal structure, 115, 265 Ru₂P₆O₁₈, preparation and crystal structure, 119, 107 Ru(PO₃)₃ · Ru₂P₆O₁₈, preparation and crystal structure, 119, 107 $M_{1/2}$ Sb $_{2/2}^{V}$ (PO₄)₃ (M = Y,In,Sc), preparation and crystal structure, 118, 104 Sb₂(PO₄)₃, preparation and crystal structure, 118, 104 $M_5 \text{SnP}_3$ ($M \approx \text{Na,K:}$), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 ThFe₅P₃, crystal structure, 117, 80 Th₄Fe₁₇P₁₀O_{1-x}, crystal structure, 117, 80 TiO₂-NaPO₃-Na₂B₄O₇ system, optically nonlinear glasses, Raman scattering and XAFS analysis, 120, 151 TIBePO₄, and TIBeAsO₄ stereochemical activity of thallium (I) lone pair, 114, 123 U₃Ni_{3,34}P₆, preparation, crystal structure, and physical properties, 116, 307 VOHPO₄ · $1/2H_2O_7$, transformation to γ -(VO)₂P₂O₇, 119, 349 ZnO-B₂O₂-SiO₂-P₂O₅, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212 Zn₂(OH)PO₄, structure-directing effect of organic additives, 114, 151 Zn₂P₂O₇, phase transformations, analysis, 119, 219 Zn₃V₄(PO₄)₆, structure determination, 115, 140 $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$, synthesis and stability, 117, 275 Zr₂(WO₄)(PO₄)₂, structure determination by powder X-ray diffraction, 120, 101 Photocatalysts fumed titanium dioxide, microstructural characterization, 115, 236 Nb₂O₅/TiO₂, surface acidity, 115, 187 Platinum Ln₂Ba₂CuPtO₈ (Ln = Ho-Lu), synthesis and characterization, 120, 316 Pt and TiO₂(rutile)(110) surface, strong-metal-support interaction between, effect of oxygen defect, 119, 237 Plutonium NaCl-type compound, thermodynamic and magnetic properties, 115, 66 dependence of Aurivillius phases Raman modes, 114, 112 Polarized Raman spectroscopy (CH₃)₃NCH₂COO · (COOH)₂ · H₂O, 114, 129 N(CH₃)₄H₂PO₄ · H₂O, 120, 343 Poly(acrylic acid) LaMnO₃₊₈ synthesized with, surface characterization, 116, 343 Polychalcogenides rare-earth salts, synthesis by moderate temperature solid-state metathesis, 117, 318 **Polymers** carbon-nitrogen, high-pressure synthesis, 117, 229 Polymorphism reversible, garnet-alluaudite, evidence in NaCa₂ M_2^{2+} (AsO₄)₃ (M^{2+} = Mg,Ni,Co) structure, 118, 267 Potassium CeK₂(NO₃)₆, double valence change for cerium during thermal decomposition, letter to editor, 115, 295 M_2 HPO₄- K_2 HPO₄- H_2 O ($M = Na,K,NH_4$), electrical conductivity measurements, 119, 68 K2Ag2SnTe4, synthesis and characterization, 117, 247 KAISiO₄ polymorphs, synthesis and characterization on SiO₂-KAiO₂ join, 115, 214 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2$ (0 < x < 0.4), synthesis and structure, 114, 399 K2BaSnTe4, synthesis and characterization, 117, 247 KCl/TbCl₃ ternary chlorides in, analysis, 115, 484 $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$, electrical properties and structural characterization, 116, 290 $KX - CuX_2 - H_2O(X^- = Cl^-, Br^-)$, double salts, 114, 385 KCu₇S₄, physical properties and successive phase transitions, 115, 379 KeFeS₂, tetrahedral FeS⁵-unit containing, X-ray absorption spectra, 119, 380 KH₂PO₄, crystal structure, 114, 219 K₂HPO₄-M₂HPO₄-H₂O (M' = Na,K,NH₄), electrical conductivity measurements, 119, 68 K_xIrO₂, structural study, 118, 372 KMgLa(PO₄)₂ doped with Eu, optical and structural investigation, 114, 282 KMo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 KMo₄O₅, analysis of tetragonal forms, 117, 217 K₂Mo₂O₁₀ · 3H₂O, crystal structure, determination by direct method/ powder diffraction package, 115, 225 β-K₂Mo₂O₄P₂O₇, tunnel structure, 114, 481 K₃(Mo)₄(PO₄)₅ with tunnel structure, 114, 61 KNB₅GeO₁₆ · 2H₂O, with 2D channel network, 115, 373 KNiPS₄, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432 кон concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254 incipient chemical reaction with scratched silicon surface, 120, 96 K_3SnX_3 (X = P, As, Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 KRETa₆Br₁₈ (RE = La-Lu,Y), crystal structure, 118, 274 $K_2RETa_6Br_{18}$ (RE = Eu, Yb), crystal structure, 118, 274 $K_6[\text{TeMo}_6O_{24}] \cdot 7H_2O$, single crystals, infrared and polarized Raman spectra, 118, 341 $K_2V_2O_8$ fresnoite-type vanadium oxides, magnetic susceptibility, 114, 499 KM^{III}(WO₄)₂ (M^{III} = Bi,Cr), vibrational properties, 117, 177 Na₄K[Cu(HIO₆)₂] · 12H₂O, crystal structure, electronic spectra, and XPS, 115, 208 SiO₂-KAlO₂ join, synthesis and characterization of KAlSiO₄ polymorphs on, 115, 214 YbI₂~KI, phase diagrams, measurement and calculation, 114, 146 Powder diffraction $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$, in crystal structure determination, 117, 103 and direct method package, in analysis of $K_2Mo_2O_{10}$ · $3H_2O$, 115, 225 $(NH_4)_2Mo_3O_{10}$ · H_2O , 116, 422 Powder neutron diffraction γ -CaSO₄, CaSO₄ · 0.5H₂O, and CaSO₄ · 0.6H₂O, 117, 165 LiZnPO₄ · H₂O light-atom positions, 114, 249 ``` Powder X-ray diffraction Ag₃[Al₃Si₃O₁₂], Rietveld refinements at 298, 623, and 723 K, 115, 55 Ag₂S-Ga₂S₃-GeS₂, phase diagram, analysis by DTA and XRD, 117, (Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta} compounds with (NH)_4FeF_6 structure type, 115, 197 BiLa₂O_{4.5}, 116, 72 (BiS)_{1+\delta}(Nb_{1+\delta}S_2)n, misfit layer structures, 115, 274 BiTeX (X = Cl, Br, I), in determination of crystal structure, 114, 379 CaCu_{0.15}Ga_{3.85}, in analysis of crystal structure, 114, 342 Ca₂HfSi₂O₀, 115, 464 y-CaSO₄, CaSO₄ · 0.5H₂O₂, and CaSO₄ · 0.6H₂O₂, 117, 165 Ca₃ZrSi₂O₉, 115, 464 MgO-MgCl2-H2O, chemical reactions, analysis, 114, 556 Na₂GdOPO₄, 120, 275 MOCuSe (M = Bi,Gd,Dy), 118,74 M(ReO_4)_2 \cdot 4H_2O \ (M = Co, Zn), 115, 255 Sn_{1-p}Cr_2S_{4-p}, 115, 7 Y₂BaCuO₅-YBa₂Cu₃O_{6+x}, quantitative X-ray, 116, 136 YbI₂ · H₂O, in determination of crystal structure, 114, 308 (Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O, 118, 303 Zr₂(WO₄)(PO₄)₂, 120, 101 Praseodymium BaCe_vPr₁ - yO₃, magnetic properties, 119, 405 BaPrO₃, magnetic properties, 119, 405 Bi₃Pr₅O₁₂, related phases, synthesis and
characterization, 116, 68 Cs₃PrCl₆ · 3H₂O, thermal dehydration and crystal structure, 116, 329 Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta} (M = Cu,Pr), synthesis and crystal structure, 114, 230 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, 114, 369 (Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl), synthesis and charac- terization, 115, 525 Nd₂O₃-Pr₆O₁₁-CuO, phase relations, 115, 291 PrAgSb₂ with HfCuSi2-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 PrT_2Al_{20} (T = Ti,Mo,W), with CeCr_2Al_{20}-type structure, 114, 337 PrBa₂Cu₃O_{7-v}, FT-IR skeletal study, 119, 36 Pr₂Ba₂Cu₂Ti₂O_{11-δ}, synthesis, structure, and superconductivity, 119, 224 PrBa₂SbO₆, synthesis and characterization, as substrates for YBa₂ Cu₃O₇₋₈, 116, 193 PrCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 PrMnO_{3+v}, crystal and defect structure, and oxygen nonstoichiometry, 118, 53 PrMnOGeO₄, preparation and crystal structure, 120, 7 PrNbO₄, relationship between covalence and displacive phase transi- tion temperature, 116, 28 Pr_4Ni_3O_{10-\delta}, synthesis, structure, and properties, 117, 236 Pr₉O₁₆, crystal structure, 118, 133 Pr_2O_3 cation array structure, 119, 131 monoclinic, identity with Pr_{9,33}(SiO₄)₆O₂, 120, 38 Pr₁₀O₁₈, crystal structure, 118, 141 PrPd₃As₂ arsenides, preparation, 115, 37 Pr₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 \alpha-PrS₂, synthesis by moderate temperature solid-state metathesis, 117, 318 PrSe2, synthesis by moderate temperature solid-state metathesis, Pr_{9.33}(SiO_4)_6O_2, identity with monoclinic Pr_{9.33}(SiO_4)_6O_2, 120, 38 Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta}, effects of spectacular giant magnetoresistance, ``` Pr_{1-x}Sr_xCoO_{3-δ} solid solutions, oxide ion conduction, 120, 128 117, 424 419 $Pr_{2-\nu}Sr_{\nu}CuO_{4-\delta}$, effect of oxygen and strontium content, 116, 385 $MPrTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 PrTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 PrTe₃, synthesis by moderate temperature solid-state metathesis, 117, 318 Pr₄V₅Si₄O₂₂, with chevkinite structure, 116, 211 α -PrZr₃F₁₅ series, cationic distribution, **118**, 389 rare-earth mixed oxide, magnetic susceptibility effect of crystal field, **114,** 52 Sr_vBa_{1-v}PrO₃, magnetic properties, 119, 405 $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$, retarded Pr f hybridization and T_c suppression, 118, 215 Pressure, see also Vapor pressure scanning high formation of rhenium hydride, in situ diffraction study, 118, 299 NaClO₃ behavior, 118, 378 oxygen, high, stabilization of mixed valence Cu(III)/Cu(IV) in perovskite lattice of La_{1-x} Sr_xCuO₃, 114, 88 Sr_2MIrO_6 (M = Ca,Mg), 115, 447 Promethium $PmAO_4$ (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 Pm₂Ba₂Cu₂Ti₂O_{11-δ}, synthesis, structure, and superconductivity, 119, Pm₂O₃, cation array structure, 119, 131 $MPmTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 PmTa₆Br₁₈, crystal structure, 118, 274 M_2 PmTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 Pulsed laser deposition NbN_x, synthesis, 117, 294 Sm_{1-x}Sr_xCuO_{2.5-x/2+8} thin films, perovskite phases and phasoids, 116, 37 Sm₂Sr₆Cu₈O₁₇₊₈ perovskite thin films prepared by, HREM study, 116, 300 **Pyrochlores** $Pb_{2-x}Ln_xRu_2O_{7-y}$ (Ln = Nd,Gd), synthesis, crystal structure, and electrical properties, 114, 15 $\text{Tl}_2\text{Nb}_2\text{O}_{6+x}$ ($0 \le x \le 1$) solutions, continuous cubic type, 114, 575 $Y_2(Zr_\nu Ti_{1-\nu})_2O_7$, neutron Rietveld analysis of disorder from Zr substitution, 117, 108 Pyroelectric properties Bi₄Te₂O₉Br₂, 116, 406 Q Quartz in concentrated basic media (NaOH, KOH, LiOH), kinetics and dissolution mechanism, effect of solvents, 118, 254 R Raman spectroscopy Aurivillius phases, 114, 112 CsGeBr₃, pressure-induced phase transition, **118**, 20 $(NH_4)_6[TeMo_6O_{24}] \cdot Te(OH)_6 \cdot 7H_2O$, **118**, 341 surface enhanced, see Surface enhanced Raman spectroscopy TiO₂-NaPO₃-Na₂B₄O₇ system optically nonlinear glasses, 120, 151 $M^{I}M^{III}(WO_4)_2$ ($M^{I} = Li, Na, K; M^{III} = Bi, Cr$), vibrational properties, polarized, see Polarized Raman spectroscopy $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O} \ (M = \text{K,NH}_4), \ 118, \ 341$ 117, 177 ``` Reduction S LaCo₁₋₁CrtO₃, reduction and reoxidation properties, 119, 271 Salicyclic acid MoO₃, kinetics and mechanism, 118, 84 temperature-programmed, see Temperature-programmed reduction photoassisted decomposition on TiO₂ and Pd/TiO₂ films, 119, 339 Reflection high-energy diffraction Salts double, Me^+X - CuX_2 - H_2O (Me^+ = K^+, NH^+_4Rb^+, Cs^+; X^- = Cl^-, Br^-), CaCuO2-SrCuO2 infinite-layer thin film heterostructures, 114, 190 Reoxidation rocksalt, (Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and charac- terization, 120, 372 LaCo_{1-t}CrtO₃, reduction and reoxidation properties, 119, 271 Samarium RHEED, see Reflection high-energy diffraction Bi₂O₃-Sm₂O₃, low-temperature stable phase, 120, 32 Bi₃Sm₅O₁₂, related phases, synthesis and characterization, 116, 68 ReH_r, formation at high pressure, in situ diffraction study, 118, 299 (Ca_{0.9}Sm_{0.1})MnO₃, electrical transport properties and high-tempera- M(ReO_4)_2 \cdot 4H_2O (M = Co,Zn), preparation and crystal structure ture thermoelectric performance, 120, 105 determination, 115, 255 PrPd₃As₂ arsenides, preparation, 115, 37 Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7, retarded Pr f hybridization and T_c suppres- SmAO_4 (A = Nb,Ta), relationship between covalence and displacive sion, 118, 215 phase transition temperature, 116, 28 Rhodium SmAgSb₂ Slater functions, formulation by distance between subspaces, 116, with HfCuSi₂-type structure, preparation, 115, 305 275 magnetism and crystal structure, 115, 441 Sr₂RhO₄, crystal structure, 118, 206 SmT_2Al_{20} (T = Ti,Mo), with CeCr_2Al_{20}-type structure, 114, 337 Rietveld refinement Sm_6T_4Al_{43} (T = Ti, V, Nb, Ta), with Ho_6Mo_4Al_{43}-type structure, prepa- Ag₃[Al₃Si₃O₁₂] structure from powder X-ray diffraction data, at 298, ration, 116, 131 623, and 723 K, 115, 55 SmBa₂Cu₃O_{7-y}, FT-IR skeletal study, 119, 36 BiCaRu₂O_{7-v}, 119, 254 Sm₂Ba₂Cu₂Ti₂O_{11-δ}, synthesis, structure, and superconductivity, 119, Ca₅Y₄S₁₁, NaCl-type structure, 119, 45 HoSr_2Cu_{2.7}Mo_{0.3}O_{7.54} superconductor, 119, 115 SmBa₂SbO₆, synthesis and characterization, as substrates for YBa₂ Li₄Mn₅O₁₂ crystal structure, 115, 420 Cu₃O_{7 - & 116, 193} Y_2(Zr_vTi_{1-v})_2O_7, neutron diffraction analysis of disorder from Zr sub- Sm_{2-x}Ce_xCuO₄, oxygen variations, effect of internal stress, analysis by stitution, 117, 108 thermogravimetry, 114, 491 Rod packings SmCo₅, and Sm₂Co₁₇, and Sm₂Co₇, binary magnetic phases competing mathematical analysis, 114, 36 for stability, leapfrog thermodynamics, 116, 92 Rubidium Sm_2MCo_2O_7 (M = Sr,Ba), synthetic, structural, electrical, and magnetic RbCl/TbCl₃ ternary chlorides in, analysis, 115, 484 properties, 114, 286 RbX - CuX_2 - H_2O(X^2 = Cl^2, Br^2), double salts, 114, 385 SmCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 RbCu₇S₄, physical properties and successive phase transitions, 115, Sm_{1-x}Nd_xNiO₃, preparation and metal-insulator properties, 120, 157 379 Sm₂O₃, cation array structure, 119, 131 RbRETa_6Br_{18} (RE = La-Lu,Y), crystal structure, 118, 274 Sm₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 Rb_2RETa_6Br_{18} (RE = Eu,Yb), crystal structure, 118, 274 Sm_{1-x}SrXCuO_{2.5-x/2+δ} PLD thin films, perovskite phases and phasoids, RbTaCu₂Te₄, synthesis and characterization, 117, 247 116, 37 Rb₂V₃O₈ fresnoite-type vanadium oxides, magnetic susceptibility, Sm₂Sr₆Cu₈O_{17+δ} perovskite films, analysis by HREM, 116, 300 114, 499 MSmTa_6Br_{18} (M = K,Rb,Cs), crystal structure, 118, 274 Rb₂V₄O₉, synthesis, crystal structure, and magnetic properties, 115, 174 SmTa₆Br₁₈, crystal structure, 118, 274 Rb₂(WO₃)₃SeO₃, synthesis, crystal structure and properties, 120, 112 M_2SmTa₆Br₁₅O₃ (M = \text{monovalent cation}), synthesis and crystal struc- YbI₂-RbI, phase diagrams, measurement and calculation, 114, 146 ture, 120, 43 Ruddlesden-Popper nickelates Sm₂(TeO₃)₃ and Te₄O₁₁, tellurite formation, enthalpy determination, Ln_4Ni_3O_{10-\delta} (Ln = La,Pr,Nd), synthesis, structure, and properties, 118, 210 117, 236 Ruthenium Ba_{5-y}Sr_ySc_{2-x}Al_2Zr_{1+x}O_{13+x/2}, structural study, 118, 180 BaHgRuO₅, synthesis and structure, 120, 223 ScCrC₂, preparation, properties, and crystal structure, 119, 324 BaLaCoRuO₆, structural and electronic properties, 114, 174 Sc₂O₃, cation array structure, 119, 131 BiCaRu₂O_{7-y}, preparation and structure, 119, 254 Sc_{1/2}Sb_{2/3}^{V}(PO_4)_3, preparation and crystal structure, 118, 104 A,A'CoRuO₆ (A,A' = Sr,Ba,La), structural and electronic properties, Sechser chains 114, 174 Na₂SnSe₃ with, synthesis, 117, 356 GdRuC2, with filled NiAs structure, 118, 158 Seebeck coefficient Pb_{2-x}Ln_xRu_2O_{7-y} (Ln = Nd,Gd), synthesis, crystal structure, and elec- Eu₂Ba₂Cu₂Ti₂O₁₁, 119, 80 trical properties, 114, 15 La₂Ba₂Cu₂Sn₂O₁₁, 119, 80 Ru₂P₆O₁₈, preparation and crystal structure, 119, 107 La₂Ba₂Cu₂Ti₂O₁₁, 119, 80 Ru(PO₃)₃ · Ru₂P₆O₁₈, preparation and crystal structure, 119, 107 LaCo_{0.2}Fe_{0.8}O_{3-\delta}, doped with Sr, 118, 117 Slater functions, formulation by distance between subspaces, 116, 275 SrLaCoRuO₆, structural and electronic properties, 114, 174 [Ba₂(OH)₂(H₂O)₁₀][Se₄], synthesis and crystal structure, 120, 12 ``` Ba(VO)₂(SeO₃)₂(HSeO₃)₂, hydrothermal synthesis and crystal struc- ture, 116, 77 CdCr₂Se₄, lattice dynamics, 118, 43 $Sr_3Ru_2O_7$, synthesis with $Sr_2RuO_4 \cdot 0.25$ CO₂, 116, 141 116, 141 Sr₂RuO₄ · 0.25 CO₂, synthesis, application in synthesis of Sr₃Ru₂O₇, CoSeO₃-II, crystal structure, 120, 182 $Cr_2Sn_3Se_7$, structural determination and magnetic properties, 115, 165
$CuS_{1-x}Se_x$ ($0 \le x \le 1$), phase transition, determination by X-ray diffractometry, 118, 176 AGa_2Se_4 (A = Cd,Hg), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442 HgCr₂Se₄, lattice dynamics, 118, 43 In_xNb₃Se₄, multilayer precursor synthesis, 117, 290 LaSe₂, synthesis by moderate temperature solid-state metathesis, 117, 318 NaCo₂(SeO₃)₂(OH), polarized electronic absorption spectra and crystal structure, **115**, 360 Na₂SnSe₃, with sechser single chains, synthesis, 117, 356 MOCuSe (M = Bi,Gd,Dy), powder X-ray and IR studies, 118, 74 PrSe₂, synthesis by moderate temperature solid-state metathesis, 117, 318 SnSe₂, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, **117**, 219 TiSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346 VSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346 $M_2(WO_3)_3SeO_3$ ($M = NH_4,Rb,Cs$), synthesis, crystal structure and properties, **120**, 112 ZnCr₂Se₄, lattice dynamics, 118, 43 Zn_{1-z}MnzGa₂Se₄, energy gap values and *T(z)* diagram, **115**, 416 SERS, *see* Surface enhanced Raman spectroscopy Silica gel $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$ preparation in, **117**, 256 film, coated over scratched Si {111} surface, stabilization, **115**, 18 filtron Ag₃[Al₃Si₃O₁₂], structures at 298, 623, and 723 K from Rietveld refinements of powder X-ray diffraction data, **115**, 55 Ca₃HfSi₂O₉, structure determination from powder diffraction, **115**, 464 Ca₃ZrSi₂O₉, structure determination from powder diffraction, **115**, 464 (C₁₈H₃₀N₃)₂ · [Si₈O₁₈(OH)₂] · 41H₂O, X-ray diffraction and NMR analysis, **120**, 231 Cs₄Sb₄O₈(Si_{4(1-x)}Ge₄xO₁₂), solid solution, electron and X-ray diffraction and ²⁹Si MAS NMR analysis, **114**, 528 with HfCuSi₂, in ternary antimonides with related structure, preparation, 115, 305 KAlSiO₄ polymorphs, synthesis and characterization on SiO₂-KAlO₂ join, 115, 214 La_{9,33}(SiO₄)₆, identity with monoclinic La₂O₃, **120**, 38 Li₂Ca₂Si₅O₁₃, crystal structure determination, 114, 512 Lu₂Fe₂Si₂, preparation, structure refinement, and properties, 114, 66 and metal and oxide devices, applications of polarizable and OH-containing glasses, mechanism, 120, 54 $\epsilon\text{-Na}_2\text{Si}_2\text{O}_5$, with high-pressure layer structure, synthesis, 119, 400 $Ni_{1,282(4)}Si_{1,284(5)}P_3$, crystal structure, **114**, 476 NiSi₂P₃, crystal structure, 114, 476 Me(OH)₂-SiO₂ (Me = Ca,Mg,Sr), mixtures, surface changes in basicity and species, role of mechanical activation, 115, 390 Pd₉Si₂, solubility of deuterium and hydrogen in, 120, 90 Pr_{9.33}(SiO₄)₆O₂, identity with monoclinic Pr₂O₃, 120, 38 Pr₄V₅Si₄O₂₂, with chevkinite structure, 116, 211 scratched {111} surface incipient chemical reaction with ethoxy and hydroxy groups, **120**, 96 silica gel film coated over, stabilization, **115**, 18 Si_{1-x}Cx:H alloys, structural properties and chemical ordering, 117, 427 SiO₂-KAlO₂ join, synthesis and characterization of KAlSiO₄ polymorphs on, 115, 214 MSi_xTe_2 (M = Nb,Ta; $1/3 \le x \le 1/2$), origin of short interslab Te-Te contacts in, analysis, 119, 394 ThCr₂Si₂, CePd_{2-x}As₂ with related structure, 115, 37 $Tm_2Fe_2Si_2$, preparation, structure refinement, and properties, **114**, 66 $U_2Fe_{17-x}Si_xC_y$, magnetic properties, **115**, 13 ZnO-B₂O₂-SiO₂-P₂O₅, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212 Zn₂SiO₄, Fe-doped single crystals, luminescence, **117**, 16 Silicon dioxide and alumina pillared pillared materials, zeolite-like, preparation, 120, 381 glasses, CdS particles in, preparation by sol-gel method, $\mathbf{118}$, 1 Silver $Ag_3[Al_3Si_3O_{12}]$, structures at 298, 623, and 723 K from Rietveld refinements of powder X-ray diffraction data, 115, 55 Ag₄Hf₃S₈, crystal structure and conductivity, **115**, 112 $(AgIn)_{2(1-z)}(MnIn_2)zTe_4$, alloys, T(z) diagram and optical energy gap values, 114, 539 Ag₂MnGeTe₄, crystal symmetry, **115**, 192 AgMn₃(PO₄)(HPO₄)₂, synthesis and structure, 117, 206 Ag₂MoO₄, hydrothermal preparation, structure, and reactivity, **117**, 323 AAgSb₂ (A = Y,La-Nd,Sm,Gd-Tm,U), with HfCuSi₂-type structure, preparation, **115**, 305 REAgSb₂ (RE = Y,La-Nd,Sm,Gd-Tm), magnetism and crystal structure, 115, 441 Ag₂S-Ga₂S₃-GeS₂, phase diagram, analysis by DTA and XRD, 117, 189 Ag_{3,8}Sn₃Ss, superionic conductor, crystal structure and conductivity, 116, 409 $(1-x)Ag_2SO_4-(x)CaSO_4$ (x=0.01-0.20), defect chemistry, **116**, 232 $Ag_2SO_4-Tl_2SO_4$, phase diagram and positive mixed cation effect, **114**, 271 AgV₂(PO₄)P₂O₇, crystal structure determination, 115, 521 $Ag_4Zr_3S_8,$ superionic conductor, crystal structure and conductivity, $\pmb{116},\,409$ colloids, 2-aminophenol in, analysis by SERS, 116, 427 K₂Ag₂SnTe₄, synthesis and characterization, 117, 247 Slater functions, formulation by distance between subspaces, 116, 275 Sinterability Co-Li₂CO₃, erratum, 116, 15; 117, 433 Slater functions for Y-Cd atoms, formulation by distance between subspaces, 116, 275 Sodium Ba₄NaCuO₄(CO₃)₂, electronic and vibrational spectra, 119, 359 M_2 HPO₄-Na₂HPO₄-H₂O ($M = \text{Na,K,NH_4}$), electrical conductivity measurements, **119**, 68 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$ (0.23 $\leq x + y \leq$ 0.37), bronzes obtained from sol-gel process, electrical properties, 118, 10 (Mg,Na,Al)₂(Al,Zn)₃, crystal structure, 115, 270 ANa_2X_4 (A = Mg,Mn;X = Cl,Br), nonceramic preparation techniques, 117, 34 α-Na₃Al₂(AsO₄)₃, crystal structure: structural relation to II-Na₃ Fe₂(AsO₄)₃, **118**, 33 $NaAlO_2 \cdot 5/4H_2O$, and dehydration product, crystal structure, 115, 126 $Na_4Al(PO_4)_2(OH)$, synthesis and characterization, 118, 412 Na₂BeGeO₄, structure and ionic conductivity, 118, 62 $NaCa_2M_2^{2+}$ (AsO₄)₃ (M^{2+} = Mg,Ni,Co), structure, **118**, 267 NaCl, related U, Np, and Pu compounds, thermodynamic and magnetic properties, 115, 66 NaClO₃, high-pressure behavior, 118, 378 NaCo₂(SeO₃)₂(OH), polarized electronic absorption spectra and crystal structure, 115, 360 Na_xCr_xTi_{8-x}O₁₆, tunnel structure analysis for stability and sodium ion transport, **116**, 296 α - and β -Na₂CuP₂O₇, crystal structure, 120, 23 Na₂Cu₂ZrS₄, synthesis and crystal structure, 117, 30 II-Na₃Fe₂(AsO₄)₃, structural relation to α-Na₃Al₂(AsO₄)₃ and Na₇ Fe₄(AsO₄)₆ sodium ion conductors, 118, 33 Na₇Fe₄(AsO₄)₆, crystal structure: structural relation to II-Na₃ Fe₂(AsO₄)₃, **118**, 33 Na₅FeS₄, tetrahedral FeS⁵-unit containing, X-ray absorption spectra, **119**, 380 Na₂GdOPO₄, solid-state synthesis, X-ray powder diffraction, and IR data, 120, 275 Na₄H[Cu(H₂TeO₆)₂] · 17H₂O, crystal structure, electronic spectra, and XPS, **115**, 208 $Na_2HPO_4-M_2'HPO_4-H_2O$ ($M' = Na,K,NH_4$), electrical conductivity measurements, **119**, 68 $Na_3La_2(CO_3)_4F$: Eu^{3+} , optical properties, correlation to crystallographic structure, 116, 286 NaMnO₄, lamellar MnO₂ from, thermal decomposition synthesis and characterization for rechargeable lithium cells, **120**, 70 NaMn₃(PO₄)(HPO₄)₂, synthesis and structure, 115, 240 Na₂MoO₄, hydrothermal preparation, structure, and reactivity, 117, 323 Na₃(MoO)₄(PO₄)₅, tunnel structure and synthesis, 114, 543 Na_{0.75}Mo_{1.17}W_{0.83}O₃(PO₄)₂, synthesis and crystal structure, 120, 353 NaOH, concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254 ε-Na₂Si₂O₅, with high-pressure layer structure, synthesis, 119, 400 $NaSn_2X_2$ (X = As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 Na₅SnX₃ (X = P,As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, **118**, 397 NaSn₂Cl₅, synthesis and crystal structure, 115, 158 Na₂SnSe₃, with sechser single chains, synthesis, 117, 356 Na_{2/3}Th_{1/3}TiO₃, synthesis, letter to editor, **120**, 207 $NaM_x^{IV}(Ti,Zr)_{2-x}(PO_4)_3$ ($M = Nb,Mo; 0 \le x \le 1$), crystal, magnetic, and electrical properties, 114, 224 $\alpha\text{-Na}_2\text{UO}_4$ and $\beta\text{-Na}_2\text{UO}_4,$ structure and thermochemistry, 115, 299 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$, synthesis and structure, 119, 176 $NaM^{III}(WO_4)_2$ ($M^{III} = Bi,Cr$), vibrational properties, 117, 177 TiO₂-NaPO₃-Na₂B₄O₇ system, optically nonlinear glasses, Raman scattering and XAFS analysis, **120**, 151 YbI₂-NaI, phase diagrams, measurement and calculation, 114, 146 Sol-gel method with hydrolysis catalysts, in preparation of crystalline structure of MgO, 115, 411 LaNiO₃ preparation, 116, 157 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$ (0.23 $\leq x + y \leq$ 0.37) prepared by, bronzes obtained, NiCo₂O₄ preparation, 116, 157 in preparation of CdS particles, in silica glasses, 118, 1 Solids thermal decomposition, isokinetic relationships in, analysis by isoconversional methods for analysis, 114, 392 Solid solutions Bi_2O_3 -CaO, rhombohedral β type, TEM analysis, 118, 66 Bi_2O_3 -SrO, rhombohedral β type, TEM analysis, 118, 66 $\text{Ca}_x \text{Sn}_x \text{Ga}_{8-2x} \text{O}_{12}$ (2.5 < x < 3.0), cationic sites, simultaneous occurrence of Sn^{4+} on, 118, 6 $Ca_{1-x}Sr_xNiN$ (0 $\leq x \leq 0.5$), preparation and crystal structure, and properties, 115, 353 (1 − x)CeO₂ · xYO_{1.5}, defect fluorite to C-type sesquioxide transition in, analysis, 120, 290 CeO_2 - $\delta YO_{21.5}$, single crystal X-ray diffraction study, 115, 23 $Co_xCd_{1-x}In_2S_4$, spinels, structural, magnetic, and optical properties, $Cs_4Sb_4O_8(Si_{4(1-x)}Ge_4xO_{12})$, electron and X-ray diffraction and ²⁹Si MAS NMR analysis, **114**, 528 LaMnO_{3+ δ}, perovskite-type, structural behavior, **114**, 516 $Ln_{1-x}Sr_xCoO_{3-\theta}$ (Ln = La, Pr, Nd), oxide ion conduction in, 120, 128 TiS, VS, TiSe, and VSe monochalcogenides, crystal chemistry and role of metal-metal bonding, **114**, 346
Tl₂Nb₂O_{6+x}, continuous cubic pyrochlore type, **114**, 575 (1 - x)ZrO₂ · xRO1.5 (R = Ho,Dy,Tb,Gd), defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290 Solid state reactions Y₂Ba₃Cu₃Co₂O₁₂, 115, 407 Spinels Al-Cu-Cr oxide semiconductors, compensated, analysis, **120**, 388 $\text{Co}_x\text{Cd}_{1-x}\text{In}_2\text{S}_4$, structural, magnetic, and optical properties, **114**, 524 oxidic lithium, tetrahedral $3d^5$ and $3d^5$ or $3d^3$ octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, **120**, 244 Stability, see Phase stability; Thermal stability Stacking distortions CuCrP₂S₆, 116, 208 Stoichiometry oxygen in $Sr_3Co_2O_{7-y}$ (0.94 $\leq y \leq 1.22$), 115, 499 Strontium $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ (R = Gd-Lu,Y,Sc), structural study, **118**, 180 (Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb₁ - yBi_y)O₆₋₈, with (NH)₄FeF₆ structure type, powder X-ray and neutron diffraction analysis, **115**, 197 $Bi_{13}Ba_2Fe_{13}O_{66},$ from 2201–0201 intergrowth $Bi_2Sr_4Fe_2O_{10},$ synthesis, 118, 357 Bi₂O₃-SrO, rhombohedral β type solid solutions in, TEM analysis, 118, 66 Bi_{1.8}Pb_{0.4}Sr₂Ca₂Cu₃O₁₀₊₈, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$, with intergrowths of 2201 and 0201 structure, synthesis, **118**, 227 Bi₂Sr₂CaCu₂O₈, chemical diffusion and synthesis kinetics, 116, 314 Bi₂Sr₂CaCu₂O₈₊₈, phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120 BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459 Bi₁₆Sr₂₈Cu₁₇O_{69+δ}, synthesis and characterization, **119**, 169 $Bi_2Sr_4Fe_2O_{10}$, 2201–0201 intergrowth, $Bi_{13}Ba_2Fe_{13}O_{66}$ from, synthesis, 118, 357 $Ca_{1-x}Sr_xNiN$ ($0 \le x \le 0.5$) solid solutions, preparation, crystal structure, and properties, 115, 353 (Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372 CuSr(HCOO)₄, crystal structure and thermal decomposition, **117**, 145 HgBiSr₇Cu₂SbO₁₅, double cationic ordering, **116**, 53 Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}LarCuO₄₊₈, synthesis and characterization, 116, 347 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, **114**, 369 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$, synthesis and characterization, **115**, 525 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$, modulated superconducting oxides, structural aspects, **120**, 332 HoSr₂Cu_{2.7}Mo_{0.3}O_{7.54}, synthesis and crystal structure, 119, 115 LaCo_{0.2}Fe_{0.8}O_{3-.5}, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, **118**, 117 $La_{1-x}Sr_xCoO_{3-\delta}$ (0 < $x \le 0.50$), 118, 323 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-y}$ (M = Co, Fe), synthesis, 119, 260 La_{1-x}Sr_xCuO₃, perovskite lattice, mixed valence Cu(III)/Cu(IV) in, stabilization under high oxygen pressure, **114**, 88 La_{6.4}Sr_{1.6}Cu₈O₂₀, ordered substitution of iron for copper, 115, 469 (La_{1-x}Sr_x)₈Cu₈O_{16+δ}, oxygen content and structure relationship, **115**, 490 LaSrFeO₄, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456 La_{0.8}Sr_{0.2}MnO₃ La/Sr vacancy defects, imaging by HREM, 114, 211 ordered La(Sr)-deficient nonstoichiometry in, analysis by HRTEM, 120, 175 La_{1-x}Sr_xMnO₃ bulk samples, giant magnetoresistance, letter to editor, 114, 297 mixed valent manganese and nickel oxide ceramics, superconducting properties, 116, 355 $Nd_{1-x}Sr_xTiO_3$ ($0 \le x \le 1$), structure, transport, and magnetic properties, **114**, 164 $Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta}$, effects of spectacular giant magnetoresistance, 117, 424 Pr_{2-y}Sr_yCuO_{4-δ}, effect of oxygen and strontium content, **116**, 385 Sm_{1-x}Sr_XCuO_{2.5-x/2+δ} PLD thin films, perovskite phases and phasoids, Sm₂Sr₆Cu₈O₁₇₊₆ perovskite films, analysis by HREM, **116**, 300 $Sr^{2+},$ doped $La_{1.2}Tb_{0.8}CuO_{4+\delta},$ derivatives, structural and conducting properties, 115, 332 SrAu₂O₄, preparation and crystal structure, 118, 247 Sr_yBa_{1-y}PrO₃, magnetic properties, 119, 405 SrCoO₃₋₈, electronic states, effects of oxygen, 119, 76 $Ln_{1-x}Sr_xCoO_{3-\delta}(Ln = La,Pr,Nd)$ solid solutions, oxide ion conduction, **120**, 128 Ln₂SrCo₂O₇ (Ln = Sm,Gd), synthetic, structural, electrical, and magnetic properties, 114, 286 $Sr_3Co_2O_{7-y}$ (0.94 $\leq y \leq 1.22$), structure and oxygen stoichiometry, **115**, 499 Sr₂CoRuO₆, structural and electronic properties, 114, 174 SrCuO₂ orthorhombic crystals, growth and structural refinement, 114, 289 $SrCuO_2$ -CaCuO2 infinite-layer thin film heterostructures, growth monitored by RHEED, **114**, 190 (Sr[Fe(CN)₅NO] · 4H₂O), crystal structure, determination by X-ray diffraction, 120, 1 Sr_2MIrO_6 (M = Ca,Mg), preparation and stabilization by high oxygen pressure, 115, 447 Sr_3MIrO_6 (M = Ni,Cu,Zn), structure and magnetic properties, 117, 300 $Sr_{1-x}La_xTiO_{3+0.5x}$, layer structure, determination by high-resolution electron microscopy, 117, 88 Sr₃La₂Ti₂O₁₀, preparation and characterization, 119, 412 Sr₅Mn₄CO₃O₁₀, synthesis and structure, 120, 279 SrMnO_{3-x} electronic properties, **114**, 242 $Ln_{1-x}Sr_xMnO_3$ ($Ln = rare\ earths$), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204 SrNb₄O₆, crystal structure, 114, 301 SrNiN, preparation, crystal structure, and properties, 115, 353 $R_{1-x} Sr_x NiO_3$ ($R = La, Nd; 0 \le x \le 0.1$), hole and electron doping, 116, 146 Sr(OD)2, crystal structure, 119, 157 Sr(OH)₂-SiO₂, mixtures, surface changes in basicity and species, role of mechanical activation, **115**, 390 Sr₂RhO₄, crystal structure, 118, 206 $Sr_3Ru_2O_7$, synthesis with $Sr_2RuO_4 \cdot 0.25$ CO_2 , 116, 141 $Sr_2RuO_4 \cdot 0.25 \ CO_2$, synthesis, application in synthesis of $Sr_3Ru_2O_7$, 116, 141 $SrSn_2X_2$ (X = As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 $Sr_4Tl_2CO_3O_6$, oxycarbonates built up from rock salt layers, 116, 321 $Sr_3V_2O_{6.99}$, preparation, electronic, and magnetic properties, 118, 292 SrY_2S_4 , structure and properties, 117, 363 Sr₂ZnN₂, synthesis and crystal structure, 119, 375 $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$, retarded Pr f hybridization and T_c suppression, 118, 215 Structure average, and superstructure, $BiLa_2O_{4.5}$ X-ray powder and electron diffraction studies, 116, 72 BaCuO_{2+x}, 119, 50 $Bi_{2-x}Nb_xO_{3+x}$ solid solution, 119, 311 CePd_{2-x}As₂, with ThCr₂Si₂ structure, refinement, 115, 37 $A, A' \text{CoRuO}_6 (A, A' = \text{Sr,Ba,La}), 114, 174$ crystal, see Crystal structure CsMo₂O₃(PO₄)₂, mixed valent monophosphate, 116, 87 cubic stabilized zirconias, disordered, modulation wave analysis, 115, 43 defect, see Defect structure electronic, InCdBr3, 116, 45 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$, **120**, 332 La_2MIrO_6 (M = Mg,Co,Ni,Zn), 116, 199 $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta}$, relationship to structure, 115, 490 LaSrFeO₄, effects of substitution of alkaline earths or Y for La, 115, 456 LiNb(OH)OPO₄, analysis by XRD and EXAFS, 114, 317 M₂O₃, cation array, 119, 131 magnetic, YBaCuFeO₅, 114, 24 microstructure, see Microstructure ε-Na₂Si₂O₅, 119, 400 $Nd_{1-x}A_xTiO_3$ ($A = Ca,Sr,Ba; 0 \le x \le 1$), 114, 164 Pr_{2-ν}Sr_νCuO_{4-δ}, effect of oxygen, 116, 385 superstructure, see Superstructure thiogallate, AGa_2X_4 (A = Cd,Hg; X = S,Se) compounds crystallizing in, lattice dynamical calculations, 114, 442 ${\rm TiO_2}$ photocatalyst, fumed, microstructural characterization, 115, 236 tunnel, see Tunnel structure $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}],$ correlations with V_2O_5 and other vanadyl compounds, $\bm{120},\,137$ Sulfamic acid NH₂HSO₃, analysis by vibrational and surface enhanced Raman scattering, **116**, 217 Sulfur Ag₄Hf₃S₈, crystal structure and conductivity, 115, 112 Ag₂S-Ga₂S₃-GeS₂, phase diagram, analysis by DTA and XRD, 117, 189 Ag_{3.8}Sn₃S₈, superionic conductor, crystal structure and conductivity, 116, 409 $(1-x)Ag_2SO_4-(x)CaSO_4$ (x = 0.01-0.20), defect chemistry, **116**, 232 $Ag_2SO_4-Tl_2SO_4$, phase diagram and positive mixed cation effect, **114**, 271 Ag₄Zr₃S₈, superionic conductor, crystal structure and conductivity, 116, 409 BaCu₂S₂, electrical and magnetic properties, 117, 73 α-BaCu₄S₃, electrical and magnetic properties, 117, 73 BaNb_{0.8}S_{3-δ}, structure and physical properties, 115, 427 BaNbS₃, structure and physical properties, 115, 427 BaTa₂S₅, superconducting and normal state properties, 116, 392 BaY₂S₄, structure and properties, 117, 363 (BiS)_{1.11}NbS₂, layered composite crystal structure, 116, 61 $(BiS)_{1+\delta}(Nb_{1+\epsilon}S_2)n$, misfit layer structures, analysis by TEM and XRD, 115, 274 Ca₄Al₆O₁₆S, crystal structure, 119, 1 γ-CaSO₄, CaSO₄ · 0.5H₂O, and CaSO₄ · 0.6H₂O, crystal structure, determination by powder diffraction methods, **117**, 165 CaY₂S₄, structure and properties, 117, 363 Ca₅Y₄S₁₁, NaCl-type structure, Rietveld refinement, 119, 45 CdS particles, preparation in silica glasses by sol-gel method, 118, 1 $\text{Co}_x\text{Cd}_{1-x}\text{In}_2\text{S}_4$, spinel solid solutions, structural, magnetic, and optical properties, 114, 524 CoCr₂S₄, lattice dynamics, 118, 43 Cr₂S₃-CuS, copper-chromium sulfide spinel and thermal decomposition reactions in, 117, 122 CsHSO₄ phase transitions, 117, 412 thermally induced phase transitions, 117, 414 CuCrP₂S₆, copper disorder, stacking distortions, and magnetic ordering, 116, 208 CuCr₂S₄, spinel formation, thermal decomposition reactions in crystalline mixtures, 117, 122 CuS, $Cu_{1.4}S$, $Cu_{1.8}S$, and Cu_2S films, optical and electrical properties, 114, 469 ACu_7S_4 (A = Tl,K,Rb), physical properties and successive phase transitions, 115, 379 CuS-Cr₂S₃, copper-chromium sulfide spinel and thermal
decomposition reactions in, 117, 122 $CuS_{1-x}Se_x$ ($0 \le x \le 1$), phase transition, determination by X-ray diffractometry, 118, 176 doped YBa₂Cu₃O_{7-x} pellets, copper whisker growth from inside, 117, 151 GaMo₄S₈-type compounds, tetrahedral clusters: metal bonding analysis, **120**, 80 AGa_2S_4 (A = Cd,Hg), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442 (Gd_eSn_{1-e}S)_{1.16}(NbS₂)₃, crystal structure and synthesis, 114, 435 KeFeS₂, tetrahedral FeS⁵-unit containing, X-ray absorption spectra, 119, 380 KNiPS₄, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432 α -LaS₂ and β -LaS₂, synthesis by moderate temperature solid-state metathesis, 117, 318 La₄Ti₃S₄O₈, synthesis and characterization, 114, 406 La₆Ti₂S₈O₅, synthesis and characterization, 114, 406 $La_{20}Ti_{11}S_{44}O_6,$ preparation and crystal structure determination, 120, $\,$ 164 $\rm Mn_x TaS_2$, intercalation compounds, physical properties and homogeneity range, 114, 1 $M_x M_{0_6} S_8$ (M = Sn, Co, Ni, Pb, La, Ho), amorphous precursors for low-temperature preparation, 117, 269 Na₂Cu₂ZrS₄, synthesis and crystal structure, 117, 30 Na₅FeS₄, tetrahedral FeS⁵-unit containing, X-ray absorption spectra, 119, 380 Nb₃SBr₇, synthesis, crystal structure, and magnetic susceptibility, 120, 311 NH₂HSO₃, analysis by vibrational and surface enhanced Raman scattering, 116, 217 PrS₂, synthesis by moderate temperature solid-state metathesis, 117, A_2 S (A = N,K; x = 1,2,3,4), synthesis by moderate temperature solidstate metathesis, 117, 318 Sn_{1-p}Cr₂S_{4-p} channel-type composite crystal, X-ray and electron diffraction study, **115**, 7 SnS₂, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, 117, 219 $Sn_4S_9[(C_3H_7)_4N]_2$, preparation and structural characterization, 114, 506 $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH]$, preparation and structural characterization, 114, 506 SnSe₂, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, 117, 219 (SO₄)²⁻, in Li₃AsO₄, vibrational behavior, 115, 83 SrY₂S₄, structure and properties, 117, 363 TaS₂,6R polytype, physical properties, 114, 486 TiS, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346 $TIV_{5-y}Fe_yS_8$ (y = 0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, 119, 147 VS, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346 M_x W₆s₈ (M = Sn,Co,Ni,Pb,La,Ho), amorphous precursors for low-temperature preparation, 117, 269 ZnCr₂S₄, lattice dynamics, 118, 43 Superconductivity $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln = La-Tb), 119, 224 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$, 119, 120 Bi₂Sr₂CaCu₂O_{8+δ}, 119, 120 mixed valent nickel and manganese oxide ceramics, 116, 355 Nd₂CuO₄-Nd₂CuO₄, system, after treatment under oxidizing conditions, 115, 540 Superconductors A15-type alloys, displacive crystallographic phase transition for, model, 119, 364 BiSrCaCuO-type, electronic localization and electrostatic energy calculation in α -PbO, SnO, Pb_{1-x}(TiO)_xO, Pb₃O₄, Pb₃(V,P)₂O₈, 114, 459 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222, ordering principles and defect structures, 114, 369 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$, structural aspects, **120**, 332 HoSr₂Cu_{2.7}Mo_{0.3}O_{7.54}, synthesis and crystal structure, 119, 115 Superstructure and average structure, BiLa₂O_{4.5} X-ray powder and electron diffraction studies, 116, 72 NbP₂O₇, preparation, 119, 98 NiAs-Ni₂In-type intermetallic phase, 118, 313 Surface acidity Nb₂O₅/TiO₂ photocatalysts, 115, 187 Surface enhanced Raman scattering NH₂HSO₃, 116, 217 Surface enhanced Raman spectroscopy 2-aminophenol in silver colloids, 116, 427 $(CH_3)_3NCH_2COO \cdot (COOH)_2 \cdot H_2O$, 114, 129 Synthesis AgMn₃(PO₄)(HPO₄)₂, 117, 206 $Al_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, **120**, 197 $Ba_{2-x}Bi_xCu_2O_5$ (0 $\leq x \leq 1.5$), 114, 585 BaCuAs₂O₇, 118, 280 $Ln_2Ba_2CuPtO_8$ (Ln = Ho-Lu), 120, 316 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln = La-Tb), 119, 224 $Ba_2M_2F_7Cl$ and $Ba_2MM'F_7Cl$ $(M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+}),$ 115, 98 BaFe_{12-2x}Co_xTi_xO₁₉ (0 < x < 1), **115**, 347 BaHgRuO₅, 120, 223 BaMo(PO₄)₂ with yavapaiite layer structure, 116, 364 $[Ba_2(OH)_2(H_2O)_{10}][Se_4]$, 120, 12 REBa₂SbO₆ (RE = Pr,Sm,Gd) as substrates for YBa₂Cu₃O_{7- δ} films, **116**, 193 Ba₈Ta₄Ti₃O₂₄, 114, 560 Ba₁₀Ta_{7.04}Ti_{1.2}O₃₀, **114,** 560 BaTe₂, 117, 247 $Ba_xV_8O_{16}$ (x = 1.09(1)), 115, 88 BaVO(PO₄)(H_2PO_4) · H_2O , 118, 241 Ba₂ZnN₂, 119, 375 Bi₁₃Ba₂Fe₁₃O₆₆, from 2201-0201 intergrowth Bi₂Sr₄Fe₂O₁₀, 118, 357 Bi₂Fe_{4-x}Al_xO₉, 114, 199 Bi₃NF₆, 114, 73 $Bi_3RE_5O_{12}$ (RE = Y,La,Pr-Lu), related phases, 116, 68 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$, 118, 227 Bi₂Sr₂CaCu₂O₈, **116**, 314 $Bi_{16}Sr_{28}Cu_{17}O_{69+\delta}$, **119**, 169 CaFeTi₂O₆, high-pressure method, 114, 277 Na_{2/3}Th_{1/3}TiO₃, synthesis, letter to editor, 120, 207 (Ca,Th)(N,O) and (Sr,Th)(N,O) rocksalt phases, 120, 372 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$, 119, 176 Ca₃Tl₂O₆, 115, 508 Nb₃SBr₂, 120, 311 $Ln_2MCo_2O_7$ (Ln = Sm,Gd; M = Sr,Ba), 114, 286 NdNiO₃, electrochemical methods, 114, 294 β-Co(OH)₂ organic additive-mediated, 114, 550 Ni-Al-M (M = Cr.Fe), 118, 285 Cs₉Mo₉Al₃P₁₁O₅₉, 114, 451 $Ln_a Ni_3 O_{10-} \delta (Ln = La, Pr, Nd), 117, 236$ CsNbOB₂O₅, 120, 74 CsTaOB₂O₅, 120, 74 $Pb_{2-x}Ln_xRu_2O_{7-y}$ (*Ln* = Nd,Gd), **114**, 15 α - and β -CsTi₃P₅O₁₉, 115, 120 MP_2O_7 (M = Mo, W), 115, 146 cubic stabilized zirconias, 115, 43 PrMnOGeO₄, 120, 7 rare-earth chalcogenides, 117, 318 Cu(C₄H₅N₃)₂Cl₂, 117, 333 $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$, 117, 256 RbTaCu₂Te₄, 117, 247 Eu₃Ba₂Mn₂Cu₂O₁₂, 115, 1 Sm_{1-r}Nd_rNiO₃, 120, 157 $Ga_2O_3(ZnO)m$ (m = 7,8,9,16), in $In_2O_3-ZnGa_2O_4-ZnO$ system, $Sm_2Sr_6Cu_8O_{17+\delta}$ films, 116, 300 **116,** 170 Sr₅Mn₄CO₃O₁₀, 120, 279 $(Gd_{\epsilon}Sn_{1-\epsilon}S)_{1.16}(NbS_{2})_{3}$, 114, 435 Sr₃Ru₂O₇, 116, 141 $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$ (M = Cu,Pr), 114, 230 Sr₂RuO₄ · 0.25 CO₂, 116, 141 $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}LarCuO_{4+\delta}$, 116, 347 Sr₃V₂O_{6.99}, 118, 292 Sr₂ZnN₂, 119, 375 $(Hg_{1-r}M_r)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$ (M = Pr,Pb,Bi,Tl), 115, 525 $M_2RETa_6Br_{15}O_3$ (M = monovalent cation; RE = rare earths), 120, 43 HoSr₂Cu_{2.7}Mo_{0.3}O_{7.54}, 119, 115 hydrothermal, see Hydrothermal synthesis TaCu₃Te₄. 117, 247 InCdBr₃, 116, 45 $M'-RTaO_4$ (R = Gd,Y,Lu), letter to editor, 118, 419 InGaO₃(ZnO)₃, in In₂O₃-ZnGa₂O₄-ZnO system, 116, 170 TaThN₃, 120, 378 InMnO₃, 116, 118 Tb₂Ba₂Cu₂Ti₂O₁₁, 117, 213 In, Nb₃Se₄, by multilayer precursor synthesis, 117, 290 $Ti_2(Ba_2Gd)Gd_2 = xCe_xCu_2O_{13}$, 114, 57 $In_2O_3(ZnO)m$ (m = 3,4,5), in $In_2O_3-ZnGa_2O_4-ZnO$ system, 116, 170 $A_4\text{Tl}_2\text{CO}_3\text{O}_6$ (A = Ca,Sr,Ba), 116, 321 InPO₄₋₁, 117, 373 VC, 120, 320 K₂Ag₂SnTe₄, 117, 247 $A_2V_4O_9$, (A = Rb,Cs), 115, 174 KAlSiO₄ polymorphs on SiO₂-KAlO₂, 115, 214 $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}]$, 120, 137 $K_2xBa_{2-x}Sb_4O_9(PO_4)_2$ (0 < x < 0.4), 114, 399 V-Me-O-N (Me = Mo, W), with temperature-programmed reaction, K₂BaSnTe₄, 117, 247 116, 205 $KNB_5GeO_{16} \cdot 2H_2O$, 115, 373 $M_2(WO_3)_3SeO_3$ (M = NH₄,Rb,Cs), 120, 112 LaMnO₃, electrochemical methods, 114, 294 Y₂Ba₃Cu₃Co₂O₁₂, 115, 407 LaMnO₃₊₈, 116, 343; 119, 164 $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$, 117, 275 La₂O₂CN₂, 114, 592 LaPd₂O₄, 114, 206 T La₄Ti₃S₄O₈, 114, 406 La₆Ti₂S₈O₅, 114, 406 Tantalum LiCoO₂, 117, 1 BaTa₂S₅, superconducting and normal state properties, 116, 392 LiMoOP₂O₇, 120, 260 Ba₈Ta₄Ti₃O₂₄, synthesis and crystal structure, 114, 560 Li_{2.88}PO_{3.73}N_{0.14}, 115, 313 Ba₁₀Ta_{7.04}Ti_{1.2}O₃₀, synthesis and crystal structure, **114**, 560 δ_1 -LiZnPO₄, 117, 39 CsErTa₆Br₁₈, crystal structure, 118, 274 Lu₃O₂F₅, 119, 125 CsTaOB₂O₅, synthesis and characterization, 120, 74 metastable materials by high-pressure methods, 117, 229 MgHOP₄ · 0.78H₂O at ambient pressure and temperature, 114, 598 impedance spectroscopy, 116, 185 Mn₄As₃, 119, 344 relationship between covalence and displacive phase transition tem- $[Mn(H_2O)]1/4(VO)3/4PO_4 \cdot 2H_2O, 116, 400$ perature, 116, 28 $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$ $(0 \le \delta \le 1)$, 117, 48 $RTaO_4$ (R = Nd-Er), relationship between covalence and displacive MnO2, from thermal decomposition of NaMnO4, for rechargeable phase transition temperature, 116, 28 lithium cells, 120, 70 $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$ ($0 \le \delta \le 1$), synthesis, structure, and magnetic Mn₂OBO₃, 114, 311 susceptibility, 117, 48 Mn_xTaS₂, 114, 1 Mn_xTaS₂, intercalation compounds, physical properties and homogene- $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$ (x = 0.53,1.00), 118, 28 ity range, 114, 1 MoO₃-II, soft chemical method, 119, 199 RbTaCu₂Te₄, synthesis and characterization, 117, 247 $M_2\text{MoO}_4$ ($M = \text{Na,NH}_4,\text{Ag}$), 117, 323 Sr₂Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xW_{0.2}Ta_{0.8}O₆, mixed valent oxide ceramic, su- α -Na₃Al₂(AsO₄)₃, 118, 33 perconducting properties, 116, 355 Na₄Al(PO₄)₂(OH), 118, 412 $Ta_6T_4Al_{43}$ (T = Ti,V,Nb,Ta), with $Ho_6Mo_4Al_{43}$ -type structure, prepara-Na₂Cu₂ZrS₄, 117, 30 tion, 116, 131 Na₇Fe₄(AsO₄)₆, 118, 33 $M_2RETa_6Br_{18}$, $MRETa_6Br_{18}$, and $RETa_6Br_{18}$ (M = monovalent cation; Na₂GdOPO₄, in solid state, 120, 275 RE = rare earth), crystal structure, 118, 274 NaMn₃(PO₄)(HPO₄)₂, 115, 240 $M_2RETa_6Br_{15}O_3$ (M = monovalent cation; RE = rare earths), synthesis Na₃(MoO)₄(PO₄)₅, 114, 543 and crystal structure, 120, 43 $Na_{0.75}Mo_{1.17}W_{0.83}O_3(PO_4)_2$, 120, 353 TaCu₃Te₄, synthesis and characterization, 117, 247 NaSn₂Cl₅, 115, 158 Na₂SnSe₃, with sechser single chains, 117, 356 Ta₂N, formation by air ignition, letter to editor, 119, 207 M'-RTaO₄ (R = Gd, Y, Lu), synthesis and characterization, letter
to editor, 118, 419 Ta₂O₅, effect of laser irradiation, letter to editor, 118, 417 TaS₂, 6R polytype, physical properties, 114, 486 TaA_xTe_2 (A = Si,Ge; 1/3 $\leq x \leq$ 1/2), origin of short interslab Te-Te contacts in, analysis, 119, 394 TaThN₃, synthesis, 120, 378 UTa₂Al₂₀, with CeCr₂Al₂₀-type structure, 114, 337 Y₃TaO₇ EXAFS analysis and reinvestigation of structure, 114, 79 Technetium Slater functions, formulation by distance between subspaces, 116, 275 Tellurium (AgIn)₂₍₁₋₂₎(MnIn₂)zTe₄, alloys, T(z) diagram and optical energy gap values, **114**, 539 Ag₂MnGeTe₄, crystal symmetry, 115, 192 BaTe₂, synthesis and characterization, 117, 247 BiTeX (X = Cl, Br, I), crystal structure, determination by powder X-ray diffraction, 114, 379 Bi₂TeO₅-Bi₂Te₂O₇, phase region, analysis by electron microscopy, **116**, 240 Bi₄Te₂O₉Br₂, pyroelectric phase, crystal structure, 116, 406 (Cr_{1-x}Fe_x)₃Te₄, magnetic properties, 120, 49 K₂Ag₂SnTe₄, synthesis and characterization, 117, 247 K₂BaSnTe₄, synthesis and characterization, 117, 247 $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$, electrical properties and structural characterization, **116**, 290 La₂Te₃, synthesis by moderate temperature solid-state metathesis, 117, 318 $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$, crystal structure, electronic spectra, and XPS, 115, 208 (NH₄)₆[TeMo₆O₂₄] · Te(OH)₆ · 7H₂O, single crystals, infrared and polarized Raman spectra, **118**, 341 $Pb_{1-x}In_xTe$ (x = 0.56), oxidation states, 116, 33 PrTe₃, synthesis by moderate temperature solid-state metathesis, 117, 318 RbTaCu₂Te₄, synthesis and characterization, 117, 247 Sr₂Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xTe_{0.2}Sb_{0.8}O₆, mixed valent oxide ceramic, superconducting properties, 116, 355 $Sr_2Zn_{1-x}Mn_xTe_{1-x}Sb_xO_6$, mixed valent oxide ceramic, superconducting properties, 116, 355 TaCu₃Te₄, synthesis and characterization, 117, 247 MA_x Te₂ (M = Nb,Ta; A = Si,Ge; $1/3 \le x \le 1/2$), origin of short interslab Te–Te contacts in, analysis, **119**, 394 $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O}$ ($M = \text{K,NH}_4$), single crystals, infrared and polarized Raman spectra, 118, 341 TeO₂, in formation of tellurites of Er,Nd,Sm,Ho, and Eu, **118**, 210 Te₄O₁₁, in formation of tellurites of Er,Nd,Sm,Ho, and Eu, **118**, 210 Tl₂GeTe₃, crystal structure, **117**, 351 TEM, see Transmission electron microscopy Temperature dependence of Aurivillius phases Raman modes, 114, 112 displacive, phase transition, RAO_4 and $LiAO_3$, (R = rare earth elements; A = Nb,Ta), relationship with covalence, 116, 28 effect on green-to-blue up-conversion, from U^{4+} ion in Cs_2ZrCl_6 , effect of temperature, 116, 113 in V-Me-O-N (Me = Mo,W) synthesis, 116, 205 Temperature-programmed reduction with in situ Mössbauer spectroscopy and X-ray diffraction, in analysis of Fe-Mo-O catalysts, 117, 127 in synthesis of VC, 120, 320 Terbium Bi₂O₃-Tb₂O₃, low-temperature stable phase, 120, 32 $Bi_3Tb_5O_{12}$, related phases, synthesis and characterization, 116, 68 $ACI/TbCl_3$ (A = K,Rb,Cs), ternary chlorides in, analysis, 115, 484 $La_{1.2}Tb_{0.8}CuO_{4+\delta}$, with T^* structure, conducting properties and structure, 115, 332 TbAO₄ (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 TbAgSb₂ with HfCuSi₂-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 Tb₂Ba₂Cu₂Ti₂O₁₁, synthesis and crystal structure, 117, 213 $Tb_2Ba_2Cu_2Ti_2O_{11-\delta}$, synthesis, structure, and superconductivity, 119, 224 TbCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 Tb₂O₃, cation array structure, 119, 131 MTbTa₆Br₁₈ (M = K,Rb,Cs), crystal structure, 118, 274 TbTa₆Br₁₈, crystal structure, 118, 274 M_2 TbTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 TbTi₂Al₂₀, with CeCr₂Al₂₀-type structure, **114**, 337 (1 − x)ZrO₂ · xTbO_{1.5}, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290 Ternary chlorides in $AKCI/TbCl_3$ (A = K,Rb,Cs), analysis, 115, 484 Tetraethyl orthosilicate incipient chemical reaction with scratched silicon surface, 120, 96 Thallium Ag_2SO_4 - Tl_2SO_4 , phase diagram and positive mixed cation effect, 114, 271 CaTl₂O₄ and Ca₂Tl₂O₅, characterization as chemical twins of rock salt structure, 114, 428 Ca₃Tl₂O₆, synthesis and crystal structure, 115, 508 Ca₃Tl₄O₉, isolation, 119, 134 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$, modulated superconducting oxides, structural aspects, 120, 332 $(Hg_{1-x}TI_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$, synthesis and characterization, 115, TIBeAsO₄ and TIBePO₄, stereochemical activity of thallium (I) lone pair, 114, 123 A_4 Tl₂CO₃O₆ (A = Ca,Sr,Ba), oxycarbonates built up from rock salt layers, 116, 321 TiCu₇S₄, physical properties and successive phase transitions, **115**, 379 Tl₂GeTe₃, crystal structure, **117**, 351 $\text{Tl}_2\text{Nb}_2\text{O}_{6+x}$ (0 $\leq x \leq 1$) solution, continuous cubic pyrochlore type, 114, 575 Tl₂O₃, cation array structure, 119, 131 $TIV_{5-y}Fe_yS_8$ (y = 0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, **119**, 147 α-TIZr₃F₁₅ series, cationic distribution, 118, 389 Thermal behavior α - and β -AlF₃ · 3H₂O, incorporation of Cu(II), analysis by ESR, 116, 249 $Co_x Cu_{1-x} Fe_2 O_4$ (0 $\leq x < 0.3$), erratum, 117, 64; 117, 433 Thermal decomposition associated reactions in CuS-Cr₂S₃, crystal mixtures, 117, 122 $CeK_2(NO_3)_6$, double valence change for cerium during, letter to editor, 115, 295 CuSr(HCOO)₄, 117, 145 $NaMnO_4$, MnO_2 from, for synthesis and characterization for rechargeable lithium cells, 120, 70 solids, isokinetic relationships in, analysis by isoconversional methods for analysis, 114, 392 Thermal stability LaCo_{0.2}Fe_{0.8}O_{3-δ}, doped with Sr, **118**, 117 LiCoO₂, 117, 1 Thermal transformation δ_1 -LiZnPO₄, 117, 39 Thermochemistry α - and β -Na₂UO₄ 115, 299 Thermodynamics, see also Leapfrog thermodynamics binary mixed crystals in sub-quasi-chemical/Debye approximation, 115, 368 ACu_7S_4 (A = Tl,K,Rb), 115, 379 U, Np, and Pu NaCl-type compounds, 115, 66 Thermoelectric power ACu_7S_4 (A = Tl,K,Rb), 115, 379 high-temperature, performance of $(Ca_{0.9}M_{0.1})MnO_3$ (M = Y,La,Ce, Sm,In,Sn,Sb,Pb,Bi), 120, 105 Thermogravimetric analysis $Ln_{2-x}Ce_{x}CuO_{4}$, 114, 491 Thiogallate structure, AGa_2X_4 (A = Cd,Hg; X = S,Se) compounds crystallizing in, lattice dynamical calculations, 114, 442 Thiosulfate cancrinite hydrothermally synthesized, structure and properties, $\mathbf{117}$, 386 Thorium (Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372 Na_{2/3}Th_{1/3}TiO₃, synthesis, letter to editor, 120, 207 TaThN₃, synthesis, 120, 378 ThCr₂Si₂, CePd_{2-x}As₂ with related structure, 115, 37 ThFe₅P₃, crystal structure, 117, 80 Th₄Fe₁₇P₁₀O_{1-x}, crystal structure, 117, 80 R_{1-x} Th_xNiO₃ (R = La,Nd; $0 \le x \le 0.1$), hole and electron doping, **116**, 146 $WTh_8Zr_{18}F_4O_{53}$, superstructure, associating anion-excess and anion-deficient blocks, 115, 283 Thulium $Ba_{5-y}Sr_yTm_{2-x}Al_2Zr_{1+x}O_{13+x/2}$, structural study, 118, 180 Tm³⁺, PbF₂/GeO₂/WO₃, glass doped with blue up-conversion emission, 115, 71 $Tm_2Fe_2Si_2C$, preparation, structure refinement, and properties, 114, 66 $TmAgSb_2$ with HfCuSi₂-type structure, preparation, **115**, 305 magnetism and crystal structure. **115**, 441 TmBa2Cu3O7-v, FT-IR skeletal study, 119, 36 Tm₂Ba₂CuPtO₈, synthesis and characterization, 120, 316 TmCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 $Tm_2Cu_2O_5$, structural characterization by neutron diffraction, 115, 324 TmNbO₄, relationship between covalence and displacive phase transition temperature, 116, 28 Tm₂O₃, cation array structure, 119, 131 $MTmTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 TmTa₆Br₁₈, crystal structure, 118, 274 M_2 TmTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 TmTi₂Al₂₀, with CeCr₂Al₂₀-type structure, **114**, 337 Ag_{3,8}Sn₃Ss, superionic conductor, crystal structure and conductivity, 116, 409 AuNi₂Sn₄, crystal structure, 119, 142 $Ca_xSn_xGa_{8-2x}O_{12}$ (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of Sn^{4+} on, 118, 6 (Ca_{0.9}Sn_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, **120**, 105 CH₃NH₃SnI₃, transport, optical, and magnetic properties, 114, 159 Cr₂Sn₃Se₇, structural determination and magnetic properties, **115**, 165 (Gd_eSn_{1-e}S)_{1.16}(NbS₂)₃, crystal structure and synthesis, **114**, 435 K₂Ag₂SnTe₄, synthesis and characterization, 117, 247 K₂BaSnTe₄, synthesis and characterization, 117, 247 La₂Ba₂Cu₂Sn₂O₁₁, high-temperature transport and defect studies, 119, 80 NaSn₂Cl₅, synthesis and crystal structure, 115, 158 Na₂SnSe₃, with sechser single chains, synthesis, 117, 356 NH₄Sn₂(PO₄)₃, hydrothermal synthesis and characterization, **119**, 197 ¹¹⁹Sn, Mössbauer spectroscopy, in analysis of bonding in Zintl phases, **118**, 397 M_5 Sn X_3 (M =Na,K;X =P,As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, **118**, 397 $M\operatorname{Sn}_2X_2$ ($M = \operatorname{Na,Sr}; X = \operatorname{As,Sb}$), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397 $Sn_{1-r}Co_rO_v$ (0 < $x \le 0.15$), thin films, structural models, 116, 256 $Sn_{1-p}Cr_2S_{4-p}$ channel-type composite crystal, X-ray and electron diffraction study, 115, 7 $Sn_xMo_6S_8$, amorphous precursors for low-temperature preparation, 117, 269 SnO, electronic lone pair localization and electrostatic energy calculations, 114, 459 SnS₂, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, 117, 219 $Sn_4S_9[(C_3H_7)_4N]_2$, preparation and structural characterization, **114**, 506 $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH]$,
preparation and structural characterization, **114**, 506 SnSe₂, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, **117**, 219 Sn_xW₆S₈, amorphous precursors for low-temperature preparation, 117, 269 Titanium $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$ (Ln = La-Tb), synthesis, structure, and superconductivity, **119**, 224 $BaFe_{12-2x}Co_xTi_xO_{19}$ crystallite size and shape, determination by X-ray line broadening analysis, 114, 534 samples with composition range 0 < x < 1, synthesis for magnetic recording, 115, 347 Ba₂Fe₂Ti₄O₁₃, preparation, crystal structure, dielectric properties, and magnetic behavior, 120, 121 Ba₈Ta₄Ti₃O₂₄, synthesis and crystal structure, 114, 560 Ba₁₀Ta_{7.04}Ti_{1.2}O₃₀, synthesis and crystal structure, **114**, 560 Ba₂TiO₄, with titanate tetrahedra, luminescence, 118, 337 Bi₂Ti₄O₁₁, phase transition, in situ analysis, 119, 281 CaFeTi₂O₆, high-pressure synthesis and crystal structure, 114, 277 Cs(TiAs)O₅, crystal structure, 120, 299 Cs(TiP)O₅, crystal structure, 120, 299 α - and β -CsTi₃P₅O₁₉, synthesis and crystal structure, **115**, 120 Eu₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, 119, 80 La₂Ba₂Cu₂Ti₂O₁₁, high-temperature transport and defect studies, 119, 80 La_{0.5}Li_{0.5}TiO₃, microstructural study, 118, 78 $La_4Ti_3S_4O_8$, synthesis and characterization, 114, 406 La₆Ti₂S₈O₅, synthesis and characterization, 114, 406 $La_{20}Ti_{11}S_{44}O_6$, preparation and crystal structure determination, 120, 164 $Na_xCr_xTi_{8-x}O_{16}$, tunnel structure analysis for stability and sodium ion transport, 116, 296 Na_{2/3}Th_{1/3}TiO₃, synthesis, letter to editor, 120, 207 $NaM_x^{IV}(Ti,Zr)_{2-x}(PO_4)_3$ ($M = Nb,Mo; 0 \le x \le 1$), crystal, magnetic, and electrical properties, **114**, 224 Nb₂O₅/TiO₂ photocatalysts, surface acidity and photocatalytic activity, 115, 187 $Nd_{1-x}A_xTiO_3$ ($A = Ca,Sr,Ba; 0 \le x \le 1$), structure, transport, and magnetic properties, **114**, 164 Pb_{1-r}(TiO)_rO, electronic lone pair localization and electrostatic energy calculations, 114, 459 Sr_{1-x}La_xTiO_{3+0.5x}, layer structure, determination by high-resolution electron microscopy. 117, 88 Sr₃La₂Ti₂O₁₀, preparation and characterization, 119, 412 Tb₂Ba₂Cu₂Ti₂O₁₁, synthesis and crystal structure, 117, 213 tion, 116, 131 Ti₂(Ba₂Gd)Gd_{2-x}Ce_xCu₂O₁₃, design and synthesis, **114**, 57 TiO_2 114, 364 effect of laser irradiation, letter to editor, 118, 417 films, photoassisted decomposition of salicyclic acid. 119, 339 photocatalyst, fumed, microstructural characterization, 115, 236 tween, effect of oxygen defect, 119, 237 scattering and XAFS analysis, 120, 151 and role of metal-metal bonding, 114, 346 TiZn₁₆, preparation, properties, and crystal structure, 118, 219 Ti₃Zn₂₂, preparation, properties, and crystal structure, 118, 219 tution, 117, 108 and zirconium phosphates, zeolite-like, preparation, 120, 381 Bi₂O₃-CaO, 118, 66 Bi₂O₃-SrO, 118, 66 $(BiS)_{1+\delta}(Nb_{1+\epsilon}S_2)n$, misfit layer structures, 115, 274 fumed titanium dioxide photocatalyst, 115, 236 HfO₂ powders, 119, 289 Nb₄W₁₃O₄₇ oxidation products, 120, 268 Nb₇W₁₀O₄₇ oxidation products, **119**, 420 $Ca_{10}(PO_4)_6(OH)_2$, 116, 265 CeVO₃, 119, 24 CH₃NH₃SnI₃, 114, 159 LaCoO₃, 116, 224 $La_{1-x}Sr_xCoO_{3-\delta}$ (0 < $x \le 0.50$), 118, 323 $Nd_{1-x}A_xTiO_3$ (A = Ca,Sr,Ba; $0 \le x \le 1$), 114, 164 Ba₃Cr₂WO₉, structure and magnetic properties, 120, 238 tures, 120, 216 Mo_{7.6}W_{1.4}O₂₅, crystal structure, 119, 8 ATi_2Al_{20} (A = rare earths, U), with $CeCr_2Al_{20}$ -type structure, 114, 337 $Ti_6T_4Al_{43}$ (T = Ti, V, Nb, Ta), with $Ho_6Mo_4Al_{43}$ -type structure, preparachromium-induced structural changes, analysis by X-ray diffraction, (rutile)(110) surface and Pt, strong-metal-support interaction be-TiO₂-Pd films, photoassisted decomposition of salicyclic acid, 119, 339 TiO2-NaPO3-Na2B4O7 system, optically nonlinear glasses, Raman TiS and TiSe, monochalcogenides and solid solutions, crystal chemistry Y₂(Zr_vTi_{1-v})₂O₇, neutron Rietveld analysis of disorder from Zr substi-Transition metals d⁰, octahedrally coordinated, out-of-center distortions around, 115, 395 Transmission electron microscopy Transmission electron spectroscopy Transport properties electrical, $(Ca_{0.9}M_{0.1})MnO_3$ (M = Y,La,Ce,Sm,In,Sn,Sb,Pb,Bi), 120, 105 Tungsten α -, β -, and γ -Fe₂WO₆ phases, magnetic and EPR studies at low tempera-Na_{0.75}Mo_{1.17}W_{0.83}O₃(PO₄)₂, synthesis and crystal structure, 120, 353 Nb₄W₁₃O₄₇, oxidation products, analysis by TEM, 120, 268 Nb₇W₁₀O₄₇, oxidation products, analysis by TEM, 119, 420 PbF₂/GeO₂/WO₃, glass doped with Tm³⁺ and Tm³⁺/Tb³⁺, blue upconversion emission, 115, 71 Sr₂Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xW_{0.2}Ta_{0.8}O₆, mixed valent oxide ceramic, su- V-W-O-N, synthesis by temperature-programmed reaction, 116, 205 AW_2AI_{20} (A = La,Ce,Pr,Nd,Eu,U), with CeCr₂Al₂₀-type structure, $M^{I}M^{III}(WO_4)_2$ ($M^{I} = Li,Na,K; M^{III} = Bi,Cr$), vibrational properties, perconducting properties, 116, 355 **117**, 177 WO₃, 1/3H₂O, reinvestigation and preparation, 119, 90 $M_2(WO_3)_3SeO_3$ (M = NH₄,Rb,Cs), synthesis, crystal structure and properties, 120, 112 WP₂O₇, synthesis and magnetic and electrical properties, 115, 146 WTh₈Zr₁₈F₄O₅₃, superstructure, associating anion-excess and aniondeficient blocks, 115, 283 $M_x W_6 Y_8$, (M = Sn, Co, Ni, Pb, La, Ho), amorphous precursors for lowtemperature preparation, 117, 269 Zr₂(WO₄)(PO₄)₂, structure determination by powder X-ray diffraction, 120, 101 Tunnel structure Cs₉Mo₉Al₃P₁₁O₅₉, 114, 451 β -K₂Mo₂O₄P₂O₇, 114, 481 $K_3(Mo)_4(PO_4)_5$, 114, 61 Na_xCr_xTi_{8-x}O₁₆, analysis for stability and sodium ion transport, 116, 296 Na₃(MoO)₄(PO₄)₅, 114, 543 T(z) diagram $(AgIn)_{2(1-z)}(MnIn_2)zTe_4$, 114, 539 Zn_{1-z}MnzGa₂Se₄, 115, 416 U Ultrasound effect on ceramics and oxides, macro- and microscopic analysis, 115, 532 Uranium CoU₂O₆, antiferromagnetic ordering, 114, 595 NaCl-type compound, thermodynamic and magnetic properties, 115, 66 α - and β -Na₂UO₄, structure and thermochemistry, 115, 299 NiU₂O₆, antiferromagnetic ordering, 114, 595 U⁴⁺, green-to-blue up-conversion emission in Cs₂ZrCl₆, effect of temperature, 116, 113 UAgSb₂, with HfCuSi₂-type structure, preparation, 115, 305 UT_2Al_{20} (T = Ti,Nb,Ta,Mo,W), with $CeCr_2Al_{20}$ -type structure, 114, 337 tion, 116, 131 U₃Co₄Ge₇, crystal structure and magnetic properties, 115, 247 $U_2Fe_{17-x}M_xC_y$ (M = Al,Si, and Ge), magnetic properties, 115, 13 U₃Ni_{3,34}P₆, preparation, crystal structure, and physical properties, 116, 307 $U_6T_4Al_{43}$ (T = Ti,V,Nb,Ta), with $Ho_6Mo_4Al_{43}$ -type structure, prepara- # \mathbf{v} Cu in $Ba_{2-x}Bi_xCu_2O_5$ (0 $\leq x \leq 1.5$), 114, 585 mixed, Cu(III)/Cu(IV) in perovskite lattice of La_{1-x}Sr_xCuO₃ stabilization under high oxygen pressure, 114, 88 Valence force constants α -Al₂O₃, relationship to elastic constants, 116, 378 Vanadium AgV₂(PO₄)P₂O₇, crystal structure determination, 115, 521 BaV₃O₈, hydrothermal synthesis and crystal structure, 117, 407 $Ba_x V_8 O_{16}$ (x = 1.09(1)), synthesis and crystal structure, 115, 88 BaVO(PO₄)(H₂PO₄) · H₂O, synthesis, structure, and magnetism, 118, 241 Ba₈(VO)₆(PO₄)₂(HPO₄)₁₁ · 3H₂O, hydrothermal synthesis and crystal structure, 116, 77 Ba(VO)₂(SeO₃)₂(HSeO₃)₂, hydrothermal synthesis and crystal structure, 116, 77 Ba_{0.4}V₃O₈(VO)_{0.4} · nH₂O, hydrothermal synthesis and crystal structure, 114, 359 CeVO₃, magnetic and transport properties, 119, 24 Cu_{0.5}(OH)_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, 117, 157 Cu_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, 117, 157 InVO₄-I, metastable form, crystal structure, 118, 93 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$ (0.23 $\leq x + y \leq$ 0.37), bronzes obtained from sol-gel process, electrical properties, 118, 10 Li_{0.8}VO₂ single crystals, superstructure analysis, 114, 184 $[Mn(H_2O)]_{1/4}(VO)_{3/4}PO_4 \cdot 2H_2O, synthesis, characterization, and intercalation of vanadyl phosphate with manganese, 116, 400$ $Mn_2VO(PO_4)_2 \cdot H_2O$, hydrothermal synthesis and structure, 115, 76 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$, synthesis and structure, 119, 176 Pb₃(V,P)₂O₈, electronic lone pair localization and electrostatic energy calculations, 114, 459 Pr₄V₅Si₄O₂₂, with chevkinite structure, 116, 211 ≈SbVO₄, rutile-type, nonstoichiometry, 116, 369 $Sr_3V_2O_{6.99}$, preparation, electronic, and magnetic properties, 118, 292 $TIV_{5-y}Fe_yS_8$ (y=0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, 119, 147 $Va_6T_4Al_{43}$ (T = Ti,V,Nb,Ta), with $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131 VC, synthesis by temperature programmed reduction, 120, 320 $V_2 O_5$ effect of laser irradiation, letter to editor, 118, 417 structural correlation with $(V^{IV}O)[V^{V}O_4] \cdot 0.5[C_3N_2H_{12}]$, 120, 137 $A_2V_3O_8$ ($A = K_1Rb_1NH_4$), fresnoite-type vanadium oxides, magnetic susceptibility, **114**, 499 $A_2V_4O_9$ (A = Rb,Cs), synthesis, crystal structure, and magnetic properties, 115, 174 $(V^{\rm IV}O)[V^{\rm V}O_4]\cdot 0.5[C_3N_2H_{12}],$ synthesis, crystal structure, and structural correlations with V_2O_5 and other vanadyl compounds, 120, 137 VO(HCO₂)₂ · H₂O, compounds based on double layers in, synthesis, 117, 136 VOHPO₄ · 1/2H₂O, transformation to γ -(VO)₂P₂O₇, 119, 349 V-Me-O-N (Me = Mo,W), synthesis by temperature-programmed reaction, 116, 205 γ -(VO)₂P₂O₇, transformation from VOHPO₄ · 1/2H₂O, 119, 349 VS and VSe, monochalcogenides and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346 Zn₃V₄(PO₄)₆, structure determination, 115, 140 Vapor pressure scanning YBa₂Cu₃O_y oxygen nonstoichiometry, 119, 62 Vibrational behavior Li₃AsO₄ guest ions, 115, 83 Vibrational spectra Ba₄LiCuO₄(CO₃)₂ and Ba₄NaCuO₄(CO₃)₂, 119,
359 Y₂O₃, **118,** 163 \mathbf{W} Water $\alpha\!\!-$ and $\beta\!\!-\!\!AlF_3\cdot 3H_2O,$ incorporation of Cu(II), analysis by ESR, 116, 249 $Al_4(PO_4)_3(HPO_4)F_6$, $(N_2C_6H_{18})_{2.5}$, $3H_2O$, synthesis and crystal structure, **120**, 197 $[Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O], hydrogen-bonding system, \textbf{114,} 102\\ BaMo_4O_{13} \cdot 2H_2O, hydrothermal synthesis and crystal structure, \textbf{116,} 95\\ [Ba_2(OH)_2(H_2O)_{10}][Se_4], synthesis and crystal structure, \textbf{120,} 12$ BaVO(PO₄)(H₂PO₄) · H₂O, synthesis, structure, and magnetism, 118, 24] Ba₈(VO)₆(PO₄)₂(HPO₄)₁₁ · 3H₂O, hydrothermal synthesis and crystal structure, **116**, 77 $Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O$, hydrothermal synthesis and crystal structure, 114, 359 $CaSO_4 \cdot 0.5H_2O$ and $CaSO_4 \cdot 0.6H_2O$, crystal structure, determination by powder diffraction methods, 117, 165 (CH₃)₃NCH₂COO · (COOH)₂ · H₂O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129 $2(C_6H_5NH_3)\cdot Mo_3O_{10}\cdot 4H_2O,$ crystal structure, determination from powder data, 117, 103 $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O$, X-ray diffraction and NMR analysis, **120**, 231 $Cs_3LnCl_6 \cdot 3H_2O$ (Ln = La-Nd), thermal dehydration and crystal structure, 116, 329 $Cu^{11}(1,4\cdot C_4H_4N_2)(C_4O_4)(OH_2)_4$, synthesis and structure determination with silica gels, 117, 256 CuCl₂ · 2H₂O, stepwise reaction with 2,2'-bipyridyl in solid state, 119, 299 $Me^+X - \text{Cu}X_2 - \text{H}_2\text{O}$ ($Me^+ = \text{K}^+, \text{NH}_4^+\text{Rb}^+, \text{Cs}^+; X^- = \text{Cl}^-, \text{Br}^-$), double salts, 114, 385 Cu_{0.5}(OH)_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, 117, 157 Cu_{0.5}[VOPO₄] · 2H₂O, hydrothermal synthesis and crystal structure, 117, 157 M_2 HPO₄- M'_2 HPO₄- H_2 O ($M,M' = Na,K,NH_4$), electrical conductivity measurements, 119, 68 $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$, electrical properties and structural characterization, **116**, 290 KMo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 K₂Mo₂O₁₀ · 3H₂O, crystal structure, determination by direct method/ powder diffraction package, 115, 225 KNB₅GeO₁₆ · 2H₂O, with 2D channel network, 115, 373 Li(H₂O)₄B(OH)₄ · 2H₂O, crystal structure and dehydration process, 115, 549 $LiZnPO_4 \cdot H_2O$, light-atom positions in, location by powder neutron diffraction, 114, 249 MgHOP₄ · 0.78H₂O, ambient pressure and temperature synthesis, 114, 598 $MgO-MgCl_2-H_2O$, chemical reactions, analysis by time-resolved synchrotron X-ray powder diffraction, **114**, 556 [Mn(H₂O)]_{1/4}(VO)_{3/4}PO₄· 2H₂O, synthesis, characterization, and intercalation of vanadyl phosphate with manganese, **116**, 400 $Mn_2VO(PO_4)_2 \cdot H_2O$, hydrothermal synthesis and structure, 115, 76 (Mn_xZn_{1-x})(OH)(NO_3) H_2O (x = 0.53,1.00), synthesis and characterization, 118, 28 $NaAlO_2 \cdot 5/4H_2O$, crystal structure, 115, 126 $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$, crystal structure, electronic spectra, and XPS, 115, 208 Na₄K[Cu(HIO₆)₂] · 12H₂O, crystal structure, electronic spectra, and XPS, **115**, 208 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$, synthesis and structure, 119, 176 $N(CH_3)_4H_2PO_4\cdot H_2O,\ FT-1R$ and polarized Raman spectra, **120,** 343 $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18}\cdot 2H_2O,\ structural,\ DSC,\ and\ IR\ analysis,\$ **114,**42 NH₄Mo(H₂O)O₂PO₄, preparation, characterization, and structure, 118, 153 (NH₄)₂Mo₃O₁₀ · H₂O, crystal structure, determination by powder diffraction, 116, 422 $(NH_4)_6[TeMo_6O_{24}]\cdot Te(OH)_6\cdot 7H_2O,$ single crystals, infrared and polarized Raman spectra, $\bf 118,\, 341$ $(M^{2+})_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{2+} = Cu,Zn,Co; M^{3+} = Cr)$, characterization, **119**, 246 Ln₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 $M(ReO_4)_2 \cdot 4H_2O$ (M = Co,Zn), preparation and crystal structure determination, 115, 255 (Sr[Fe(CN)₅NO] · 4H₂O), crystal structure, determination by X-ray diffraction, **120**, 1 $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O}$ ($M = \text{K,NH}_4$), single crystals, infrared and polarized Raman spectra, 118, 341 VO(HCO₂)₂ · H₂O, compounds based on double layers in, synthesis, 117, 136 VOHPO₄ · 1/2H₂O, transformation to γ -(VO)₂P₂O₇, 119, 349 WO₃, 1/3H₂O, reinvestigation and preparation, 119, 90 YbI₂ · H₂O, crystal structure, determination by X-ray powder diffraction, 114, 308 $[Zn_2Cr(OH)_6]X \cdot nH_2O$, where $X^- = 1/2 \text{ mal}^{2-}$, cis- $[Cr(mal)_2(H_2O)_2]^-$, and $1/3[Cr(mal)_3]^{3-}$ (mal = malonate), malonate intercalation into, $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$, cation distribution and coordination chemistry, structural and spectroscopic study, 118, 303 Fe_{1-x}O, defect distributions in, paracrystalline descriptions, 117, 398 \mathbf{X} XPS, see X-ray photoelectron spectra X-ray absorption spectroscopy KeFeS₂, tetrahedral FeS⁵-unit containing, 119, 380 TiO₂-NaPO₃-Na₂B₄O₇ system optically nonlinear glasses, 120, 151 X-ray adsorption near-edge structure $Mn_3Al_{2-x}Cr_xGe_3O_{12}$, 118, 261 X-ray diffraction, see also Powder X-ray diffraction anomalous scattering, for probing Cs2[AuCl2][AuCl4], electronic anisotropy, 118, 383 BaFe_{12-2x}Co_xTi_xO₁₉, line broadening, 114, 534 $CeO_2-\delta YO_{21.5}$, 115, 23 $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O$, 120, 231 CO₂ decomposition to carbon, analysis with Ni_{0.39}Fe_{2.61}O₄₋₈, 120, 64 CsGeBr₃, analysis of pressure-induced phase transition, 118, 20 CsNbOB₂O₅, 120, 74 $Cs_4Sb_4O_8(Si_{4(1-x)}Ge_4xO_{12})$ solid solution, 114, 528 CsTaOB₂O₅, 120, 74 CuNd₂Ge₂O₈, 120, 254 fumed titanium dioxide photocatalyst, 115, 236 high-resolution synchrotron, La₅Cu₅O_{13,35}, 118, 170 LíCuO2, symmetry, 114, 590 LiNb(OH)OPO₄, structural analysis, 114, 317 Li_{0.8}VO₂, 114, 184 Mn₃B₇O₁₃Br, 120, 60 Mn₃B₇O₁₃l, **120**, 60 ReH_x, in situ formation at high pressure, 118, 299 and in situ Mössbauer spectroscopy, TPR with, in analysis of Fe-Mo-O catalysts, 117, 127 (Sr[Fe(CN)₅NO] · 4H₂O) crystal structure, **120**, 1 TiO2, chromium induced changes, 114, 364 X-ray diffractometry powder $CuS_{1-x}Se_x$ (0 $\leq x \leq$ 1), 118, 176 X-ray photoelectron spectra $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$ and $Na_4K[Cu(HIO_6)_2] \cdot 12H_2O$, 115, 208 X-ray spectroscopy Ca_{10-x-y}Cd_xPb_y(PO₄)₆(OH)₂ solid solutions, 116, 8 Pb₁₀(PO₄)₆(OH)₂, nucleation kinetics, 116, 8 # Y ## Ytterbium XRD, see X-ray diffraction $Ba_{5-y}Sr_yYb_{2-x}Al_2Zr_{1+x}O_{13+x/2},$ structural study, **118**, 180 $Bi_3Yb_5O_{12}$, related phases, synthesis and characterization, **116**, 68 $YbBa_2Cu_3O_{7-y}$, FT-IR skeletal study, **119**, 36 $Yb_2Ba_2CuPtO_8$, synthesis and characterization, **120**, 316 YbCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 Yb₂Cu₂O₅, structural characterization by neutron diffraction, 115, 324 YbI2 · H2O, crystal structure, determination by X-ray powder diffraction, 114, 308 $YbI_2-AI(A = Na,K,Rb,Cs)$ phase diagrams, measurement and calculation, 114, 146 YbNbO₄, relationship between covalence and displacive phase transition temperature, 116, 28 Yb₂O₃, cation array structure, 119, 131 Yb₂P₆O₁₈ · 10H₂O, preparation and characterization, 119, 203 $MYbTa_6Br_{18}$ and $M_2YbTa_6Br_{18}$ (M = K,Rb,Cs), crystal structure, 118, 274 M_2 YbTa₆Br₁₅O₃ (M = monovalent cation), synthesis and crystal structure, 120, 43 YbTi₂Al₂₀, with CeCr₂Al₂₀-type structure, **114**, 337 α -YbZr₃F₁₅ series, cationic distribution, **118**, 389 $Ba_{5-y}Sr_{y}Y_{2-x}Al_{2}Zr_{1+x}O_{13+x/2}$, structural study, 118, 180 BaY₂S₄, structure and properties, 117, 363 Bi₃Y₅O₁₂, related phases, synthesis and characterization, 116, 68 (Ca_{0.9}Y_{0.1})MnO₃, electrical transport properties and high-temperature thermoelectric performance, 120, 105 CaY₂S₄, structure and properties, 117, 363 Ca₅Y₄S₁₁, NaCl-type structure, Rietveld refinement, 119, 45 (1-x)CeO₂ · xYO_{1.5}, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, 120, 290 $CeO_2-\delta YO_{21.5}$, single crystal X-ray study, 115, 23 Slater functions, formulation by distance between subspaces, 116, 275 SrY₂S₄, structure and properties, 117, 363 substitution for La in LaSrFeO4, effects on structure and electrical properties, 115, 456 $Y_6T_4Al_{43}$ (T = Ti, V, Nb, Ta), with $Ho_6Mo_4Al_{43}$ -type structure, 116, 131 with HfCuSi₂-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 YBaCoCu_{1-x}Fe_xO₅, magnetic behavior, 115, 514 Y₂Ba₃Cu₃Co₂O₁₂, synthesis by solid state reaction, 115, 407 YBaCuFeO₅, crystal and magnetic structure, 114, 24 YBa₂Cu₃O_{7-δ}, films, perovskites as substrates for, synthesis and characterization, 116, 193 YBa₂Cu₃O_{7-x}, sulfur-doped pellets, copper whisker growth from inside, **117,** 151 YBa₂Cu₃O_{7-v}, FT-IR skeletal study, 119, 36 Y₂BaCuO₅-YBa₂Cu₃O_{6+x}, quantitative X-ray, 116, 136 YBa₂Cu₃O_y, oxygen nonstoichiometry in, vapor pressure scanning, 119, 62 YCa₂SbFe₄O₁₂, magnetic ordering, 115, 435 YCuAs₂, with HfCuSi₂-type structure, preparation, 115, 305 YCuO₂ phase in Y₂O₃-Cu-CuO system, analysis by oxygen coulometry, 114, 420 Y2Cu2O5 phase in Y₂O₃-Cu-CuO system, analysis by oxygen coulometry, structural characterization by neutron diffraction, 115, 324 $Y_{1-x}A_x$ MnO₃ (A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204 YNbO₄, relationship between covalence and displacive phase transition $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$, retarded Pr f hybridization and T_c suppres- temperature, 116, 28 sion, 118, 215 cation array structure, 119, 131 cubic form, vibrational spectroscopy, 118, 163 Y₂O₃-Cu-Cu-CuO, analysis by oxygen coulometry, 114, 420 Y_2O_3 $Y_{1/2}Sb_{3/2}^{V}(PO_4)_3$, preparation and crystal structure, **118**, 104 $M'-YTaO_4$, synthesis and characterization,
letter to editor, **118**, 419 Y_3TaO_7 EXAFS analysis and reinvestigation of structure, **114**, 79 α -YZr₃F₁₅ series, cationic distribution, **118**, 389 Y₂(Zr_yTi_{1-y})₂O₇, neutron Rietveld analysis of disorder from Zr substitution, **117**, 108 ### \mathbf{z} #### Zeolites HEU-type, Ni ions in, location and reducibility, **114**, 108 related pillared metal(IV) phosphate material, preparation, **120**, 381 Zinc $BaFe_{12-2x}Ir_xZn_xO_{19}$ ($x\sim 0.50$), magnetic properties, cationic distribution in relation to, 120, 17 $Ba_2ZnM'F_7Cl$ ($M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$), synthesis, magnetic behavior, and structural study, **115**, 98 Ba₂Zn₂F₇Cl, synthesis, magnetic behavior, and structural study, **115**, 98 Ba₂ZnN₂, synthesis and crystal structure, **119**, 375 Cu-Zn coprecipitate, effect of incorporation of Al⁺³ on structure, 115, 204 Cu_rZn_{1-r}Nb₂O₆, structural relations, 115, 476 $Ga_2O_3(ZnO)m$ (m = 7,8,9,16), in In_2O_3 -Zn Ga_2O_4 -ZnO system, synthesis and single-crystal data, **116**, 170 InGaO₃(ZnO)₃, in In₂O₃–ZnGa₂O₄–ZnO system, synthesis and singlecrystal data, **116**, 170 $In_2O_3(ZnO)m$ (m = 3.4.5), in $In_2O_3-ZnGa_2O_4-ZnO$ system, synthesis and single-crystal data. **116.** 170 La₂ZnIrO₆, structure and magnetic properties, 116, 199 LiZnPO₄, structure determination by ab initio methods, 114, 249 δ_i -LiZnPO₄, preparation, structure determination, and thermal transformation, 117, 39 LiZnPO₄ · H₂O, light-atom positions in, location by powder neutron diffraction, **114**, 249 (Mg,Na,Al)2(Al,Zn)3, crystal structure, 115, 270 MnB_2X_4 (B = Li, Na; X = Cl, Br), nonceramic preparation techniques, 117, 34 $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$ (x = 0.53,1.00), synthesis and characterization, **118**, 28 Sr₂Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xTc_{0.2}Sb_{0.8}O₆, mixed valent oxide ceramic, superconducting properties, **116**, 355 $Sr_2Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xW_{0.2}Ta_{0.8}O_6$, mixed valent oxide ceramic, superconducting properties, 116, 355 Sr₃ZnIrO₆, structure and magnetic properties, 117, 300 $Sr_2Zn_{1-x}Mn_xTe_{1-x}Sb_xO_6$, mixed valent oxide ceramic, superconducting properties, **116**, 355 Sr₂ZnN₂, synthesis and crystal structure, 119, 375 TiZn₁₆, preparation, properties, and crystal structure, **118**, 219 Ti₃Zn₂₂, preparation, properties, and crystal structure, 118, 219 Zn-Al layered double hydroxides, preparation by surface modification of layered compound, 117, 337 $[Zn_2Cr(OH)_6]X \cdot nH_2O$, where $X^- = 1/2 \text{ mal}^{2-}$, cis- $[Cr(mal)_2(H_2O)_2]^-$, and $1/3[Cr(mal)_3]^{3-}$ (mal = malonate), malonate intercalation into, 119, 331 ZnCr₂S₄, lattice dynamics, 118, 43 ZnCr₂Se₄, lattice dynamics, 118, 43 $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$, cation distribution and coordination chemistry, structural and spectroscopic study, **118**, 303 $Zn_{1-z}MnzGa_2Se_4$, energy gap values and T(z) diagram, 115, 416 ZnO-based glasses, OH-containing, applications to MOS devices, mechanism. 120, 54 ZnO-B₂O₂-SiO₂-P₂O₅, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212 $Zn_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O$ ($M^{3+}=Cr$), characterization, **119**, 246 $Zn_2(OH)PO_4$, structure-directing effect of organic additives, **114**, 151 $Zn_2P_2O_7$, phase transformations, analysis, **119**, 219 Zn(ReO₄)₂ · 4H₂O, preparation and crystal structure determination, 115, 255 Zn₂SiO₄, Fe-doped single crystals, luminescence, 117, 16 Zn₃V₄(PO₄)₆, structure determination, 115, 140 Zintl phases bonding, analysis by ¹¹⁹Sn Mössbauer spectroscopy, **118**, 397 Zirconium Ag₄Zr₃S₈, superionic conductor, crystal structure and conductivity, 116, 409 $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ (R = Gd-Lu,Y,Sc), structural study, **118.** 180 Ca₃ZrSi₂O₉, structure determination from powder diffraction, 115, 464 Cs₂ZrCl₆, green-to-blue up-conversion emission from U⁴⁺ ion in, effect of temperature. 116, 113 Li₃Zr₄F₁₉ and Li₄Zr₄F₈, crystal structures, in reanalysis of LiF-ZrF₄ phase diagram, **120**, 187 Na₂Cu₂ZrS₄, synthesis and crystal structure, 117, 30 $\operatorname{Na}M^{1}_{x}(\operatorname{Ti,Zr})_{2-x}(\operatorname{PO}_{4})_{3}$ $(M = \operatorname{Nb,Mo}; 0 \le x \le 1)$, crystal, magnetic, and electrical properties, **114**, 224 PbO-ZrO₂, solution derived powders, homogeneity problems in, 117, 343 Slater functions, formulation by distance between subspaces, **116**, 275 and titanium phosphates, zeolite-like, preparation, **120**, 381 WTh₈Zr₁₈F₄O₅₃, superstructure, associating anion-excess and aniondeficient blocks, **115**, 283 $Y_2(Zr_yTi_{1-y})_2O_7$, neutron Rietveld analysis of disorder from Zr substitution, 117, 108 α -MZr₃F₁₅ series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), cationic distribution, 118, 389 $(1 - x)ZrO_2 \cdot xRO_{1.5}$ (R = Ho,Dy,Tb,Gd), microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290 $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$, synthesis and stability, 117, 275 Zr₂(WO₄)(PO₄)₂, structure determination by powder X-ray diffraction, 120, 101