# Cumulative Subject Index for Volumes 114-1201

A

Acidity

Nb<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> photocatalyst surface, 115, 187

Alloys

A15-type superconductor, displacive crystallographic phase transition for, model, 119, 364

 $(AgIn)_{2(1-z)}(MnIn_2)_zTe_4$ , T(z) diagram and optical energy gap values, 114. 539

Zn<sub>1-z</sub>Mn<sub>z</sub>Ga<sub>2</sub>Se<sub>4</sub>, energy gap values and T(z) diagram, 115, 416 Alluaudite

 $NaMn_3(PO_4)(HPO_4)_2$ , synthesis and structure, 115, 240 Aluminum

Ag<sub>3</sub>[Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>], structures at 298, 623, and 723 K from Rietveld refinements of powder X-ray diffraction data, 115, 55

Al+3, effect of structure on Cu-Zn coprecipitate, 115, 204

 $A_6T_4Al_{43}$  (A = Y,Nd,Sm,Gd-Lu,U; T = Ti,V,Nb,Ta), with Ho<sub>6</sub> Mo<sub>4</sub>Al<sub>43</sub>-type structure, preparation, 116, 131

 $AT_2Al_{20}$  (A = rare earths,U; T = Ti,Ta,Mo,W), with  $CeCr_2Al_{20}$ -type structure. 114, 337

 $\alpha$ - and  $\beta$ -AlF<sub>3</sub> · 3H<sub>2</sub>O, incorporation of Cu(II), analysis by ESR, 116, 249

 $\alpha\text{-}Al_2O_3$  , relationship between valence force constants and elastic constants, 116, 378

 $Al_{28}O_{21}C_6N_6$ , diamond-related compound in system  $Al_2O_3-Al_4C_3-AlN$ , identification, 120, 211

Al-O-R-O-Al, characterization by IR and <sup>13</sup>C and <sup>27</sup>Al NMR techniques, 119, 319

 $Al_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , synthesis and crystal structure, 120, 197

Ba-β-Al<sub>2</sub>O<sub>3</sub>, materials for high-temperature catalytic combustion, crystal structure, 114, 326

 $BaAl_9O_{14.5}$ ,  $BaAl_{12}O_{19}$ , and  $BaAl_{14}O_{22}$ , FT-IR skeletal powder spectra, 117. 8

 $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$  (R = Gd-Lu,Y,Sc), structural study, 118, 180

Bi<sub>2</sub>Fe<sub>4-r</sub>Al<sub>2</sub>O<sub>9</sub>, structural and magnetic studies, 114, 199

Ca<sub>4</sub>Al<sub>6</sub>O<sub>16</sub>S, crystal structure, 119, 1

CaMg<sub>2</sub>Al<sub>16</sub>O<sub>27</sub>

phase relationships in CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, 120, 358 structure refinement, 120, 364

Ca<sub>2</sub>Mg<sub>2</sub>Al<sub>28</sub>O<sub>46</sub>

phase relationships in CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, 120, 358 structure refinement, 120, 364

CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, Al-rich part, phase relationships, **120**, 358 CeCr<sub>2</sub>Al<sub>20</sub>, related structure,  $AT_2$ Al<sub>20</sub> (A = rare earths,U; T = Ti,Ta, Mo,W) ternary aluminides with, **114**, 337

Cs<sub>9</sub>Mo<sub>9</sub>Al<sub>3</sub>P<sub>11</sub>O<sub>59</sub>, with tunnel structure, isolation, 114, 451

-Cu-Cr spinel oxide semiconductors, compensated, analysis, 120, 388

 $Ho_6Mo_4Al_{43}$ , related type structure of  $A_6T_4Al_{43}$  (A = Y,Nd,Sm,Gd-Lu,U; T = Ti,V,Nb,Ta), 116, 131

KAISiO<sub>4</sub> polymorphs, synthesis and characterization on SiO<sub>2</sub>-KAlO<sub>2</sub> join, 115, 214

(Mg,Na,Al)2(Al,Zn)3, crystal structure, 115, 270

Mn<sub>3</sub>Al<sub>2-x</sub>Cr<sub>x</sub>Ge<sub>3</sub>O<sub>12</sub>, X-ray absorption spectroscopic and magnetic analysis, 118, 261

 $\alpha$ -Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, crystal structure: structural relation to II-Na<sub>3</sub> Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, 118, 33

 $NaAlO_2 \cdot 5/4H_2O$ , and dehydration product, crystal structure, 115, 126  $Na_4Al(PO_4)_2(OH)$ , synthesis and characterization, 118, 412

Ni-Al-M (M = Cr, Fe), synthesis and characterization, 118, 285

SiO<sub>2</sub>-KAlO<sub>2</sub> join, KAlSiO<sub>4</sub> polymorphs, synthesis and characterization, 115, 214

U<sub>2</sub>Fe<sub>17-x</sub>Al<sub>x</sub>C<sub>y</sub>, magnetic properties, 115, 13

Zn-Al layered double hydroxides, preparation by surface modification of layered compound, 117, 337

Aluminum oxide

and silica pillared materials, zeolite-like, preparation, 120, 381 o-Aminophenol

in silver colloids, analysis by SERS, 116, 427

Ammonia

gaseous, in temperature-programmed synthesis of V-Me-O-N (Me = Mo,W) synthesis, 116, 205

Ammonium

 $M_2$ HPO<sub>4</sub>-(NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>-H<sub>2</sub>O ( $M = \text{Na,K,NH_4}$ ), electrical conductivity measurements, **119**, 68

 $NH_4X-CuX_2-H_2O(X^- \approx Cl^-,Br^-)$ , double salts, 114, 385

(NH<sub>4</sub>)<sub>3</sub>FeF<sub>6</sub> (Ba<sub>1-x</sub>Sr<sub>x</sub>)<sub>2</sub>(Sr<sub>0.67</sub>Bi<sub>0.33</sub>)(Pb<sub>1-y</sub>Bi<sub>y</sub>)O<sub>6-8</sub>, with related structure, powder X-ray and neutron diffraction analysis, **115**, 197

 $(NH_4)_2HPO_4-M_2'HPO_4-H_2O$  ( $M' = Na,K,NH_4$ ), electrical conductivity measurements, 119, 68

NH<sub>4</sub>Mo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

 $(NH_4)_2\dot{M}oO_4$ , hydrothermal preparation, structure, and reactivity, 117, 323

(NH<sub>4</sub>)<sub>2</sub>Mo<sub>3</sub>O<sub>10</sub> · H<sub>2</sub>O, crystal structure, determination by powder diffraction, 116, 422

NH<sub>4</sub>Sn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, hydrothermal synthesis and characterization, 119, 197 (NH<sub>4</sub>)<sub>6</sub>[TeMo<sub>6</sub>O<sub>24</sub>] · 7H<sub>2</sub>O, single crystals, infrared and polarized Raman spectra, 118, 341

(NH<sub>4</sub>)<sub>6</sub>[TeMo<sub>6</sub>O<sub>24</sub>] · Te(OH)<sub>6</sub> · 7H<sub>2</sub>O, single crystals, infrared and polarized Raman spectra, 118, 341

(NH<sub>4</sub>)<sub>2</sub>V<sub>3</sub>O<sub>8</sub> fresnoite-type vanadium oxides, magnetic susceptibility, 114, 499

(NH<sub>4</sub>)<sub>2</sub>(WO<sub>3</sub>)<sub>3</sub>SeO<sub>3</sub>, synthesis, crystal structure and properties, 120, 112

Annealing

LaMnO<sub>3+8</sub> powder in air, 119, 164

Antiferromagnetism

in A-B interactions between tetrahedral  $3d^5$  and  $3d^5$  or  $3d^3$  octahedral cations in oxidic lithium spinels, electronic spectrum, 120, 244

CoU<sub>2</sub>O<sub>6</sub>, 114, 595

NiU<sub>2</sub>O<sub>6</sub>, 114, 595

Antimony

AAgSb<sub>2</sub> (A = Y,La-Nd,Sm,Gd-Tm,U), with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

REAgSb<sub>2</sub> (RE = Y,La-Nd,Sm,Gd-Tm), magnetism and crystal structure, 115, 441

<sup>&</sup>lt;sup>1</sup> Boldface numbers indicate the appropriate volume; lightface numbers indicate pagination.

REBa<sub>2</sub>SbO<sub>6</sub> (RE = Pr,Sm,Gd), synthesis and characterization, as substrates for YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-8</sub>, 116, 193

(Ca<sub>0.9</sub>Sb<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature thermoelectric performance, 120, 105

Cs<sub>4</sub>Sb<sub>4</sub>O<sub>8</sub>(Si<sub>4(1-x)</sub>Ge<sub>4x</sub>O<sub>12</sub>), solid solution, electron and X-ray diffraction and 29Si MAS NMR analysis, 114, 528

CuSb<sub>2</sub>O<sub>6</sub>, long-range magnetic order, confirmation, 118, 199

HgBiSr<sub>7</sub>Cu<sub>2</sub>SbO<sub>15</sub>, double cationic ordering, 116, 53

 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2$  (0 < x < 0.4), synthesis and structure, 114, 399 β-Sb<sub>2</sub>O<sub>4</sub>-type structure, Bi<sub>2</sub>O<sub>4</sub> with, 116, 281

 $M_{1/2}Sb_{3/2}^{V}(PO_4)_3$  (M = Y,In,Sc), preparation and crystal structure, 118, 104

Sb<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, preparation and crystal structure, 118, 104

≈SbVO<sub>4</sub>, rutile-type, nonstoichiometry, 116, 369

 $MSn_2Sb_2$  (M = Na,Sr), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

 $M_5$ SnSb<sub>3</sub> (M =Na,K;), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

Sr<sub>2</sub>Zn<sub>0.2</sub>Ga<sub>0.8-x</sub>Mn(Cr)<sub>x</sub>Te<sub>0.2</sub>Sb<sub>0.8</sub>O<sub>6</sub>, mixed valent oxide ceramic, superconducting properties, 116, 355

Sr<sub>2</sub>Zn<sub>1-x</sub>Mn<sub>x</sub>Te<sub>1-x</sub>Sb<sub>x</sub>O<sub>6</sub>, mixed valent oxide ceramic, superconducting properties, 116, 355

YCa<sub>2</sub>SbFe<sub>4</sub>O<sub>12</sub>, magnetic ordering, 115, 435

 $AAs_2O_6$  (A = Mn,Co,Ni), structural and magnetic properties, 118, 402  $M_2As_2O_7$  (M = Ni,Co,Mn), magnetic properties and structures, 115, 229 BaCuAs<sub>2</sub>O<sub>7</sub>, synthesis and structure, 118, 280

CePd<sub>2-x</sub>As<sub>2</sub>, with ThCr<sub>2</sub>Si<sub>2</sub> structure, structure refinement, 115, 37 Cs(TiAs)O<sub>5</sub>, crystal structure, 120, 299

ACuAs<sub>2</sub> (A = Y,La-Nd,Sm,Gd-Lu), with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

Li<sub>3</sub>AsO<sub>4</sub>, guest ion vibrational behavior, 115, 83

Mn<sub>4</sub>As<sub>3</sub>, synthesis, crystal structure, and relation to other manganese arsenides, 119, 344

α-Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, crystal structure: structural relation to II-Na<sub>3</sub> Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, 118, 33

 $NaCa_2M_2^{2+}$  (AsO<sub>4</sub>)<sub>3</sub> ( $M^{2+}$  = Mg,Ni,Co), structure, 118, 267

II-Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, structural relation to α-Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub> and Na<sub>7</sub> Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub> sodium ion conductors, 118, 33

Na<sub>7</sub>Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub>, crystal structure: structural relation to II-Na<sub>3</sub> Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, 118, 33

NiAs filled structure, GdRuC2 with, 118, 158

NiAs-Ni<sub>2</sub>In, intermetallic phases, superstructures in, analysis, 118, 313 Pb<sub>2</sub>Cu(II)<sub>7</sub>(AsO<sub>4</sub>)<sub>6</sub>, crystal structure, topological relationship to  $Pb_2Cu(I)_2Cu(II)_6(AsO_4)_6$ , 114, 413

Pb<sub>2</sub>Cu(I)<sub>2</sub>Cu(II)<sub>6</sub>(AsO<sub>4</sub>)<sub>6</sub>, crystal structure, topological relationship to Pb<sub>2</sub>Cu(II)<sub>7</sub>(AsO<sub>4</sub>)<sub>6</sub>, 114, 413

 $LnPd_3As_2$  (Ln = La-Nd,Sm,Gd) arsenides, 115, 37

 $MSn_2As_2$  (M = Na,Sr), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

 $M_5$ SnAs<sub>3</sub> (M = Na,K;), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

TIBeAsO<sub>4</sub>, and TIBePO<sub>4</sub> stereochemical activity of thallium (I) lone pair, 114, 123

Aurivillius phases

Raman modes, temperature and polarization dependence, 114, 112

В

Band calculations

Mn<sub>2</sub>OBO<sub>3</sub>, 114, 311

Barium

Ba-β-Al<sub>2</sub>O<sub>3</sub>, materials for high-temperature catalytic combustion, crystal structure, 114, 326

BaAl<sub>9</sub>O<sub>14.5</sub>, BaAl<sub>12</sub>O<sub>19</sub>, and BaAl<sub>14</sub>O<sub>22</sub>, FT-IR skeletal powder spectra, 117.8

BaAu<sub>2</sub>O<sub>4</sub>, preparation and crystal structure, 118, 247

 $Ba_{2-x}Bi_xCu_2O_5$  (0  $\leq x \leq 1.5$ ), synthesis and characterization, 114, 585

BaBiO<sub>3- $\delta$ </sub> (0  $\leq \delta \leq$  0.5), analysis, 117, 55 BaBiO<sub>2</sub>Cl, cation ordering, 117, 201

BaCe, Pr<sub>1-v</sub>O<sub>3</sub>, magnetic properties, 119, 405

 $BaCoO_{3-\nu}$ , HREM study, 120, 327

 $Ln_2BaCo_2O_7$  (Ln = Sm,Gd), synthetic, structural, electrical, and magnetic properties, 114, 286

Ba<sub>2</sub>CoRuO<sub>6</sub>, structural and electronic properties, 114, 174

 $Ba_3Cr_2MO_9$  (M = Mo,W), structure and magnetic properties, 120, 238 BaCuAs<sub>2</sub>O<sub>7</sub>, synthesis and structure, 118, 280

BaCuO<sub>2+x</sub>, structural, magnetic, and EPR studies, 119, 50

 $RBa_2Cu_3O_{7-y}$  (R = Ln or Y), FT-IR skeletal study, 119, 36

 $Ln_2Ba_2CuPtO_8$  (Ln = Ho-Lu), synthesis and characterization, 120, 316

BaCu<sub>2</sub>S<sub>2</sub>, electrical and magnetic properties, 117, 73

α-BaCu<sub>4</sub>S<sub>3</sub>, electrical and magnetic properties, 117, 73

 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln = La-Tb), synthesis, structure, and superconductivity, 119, 224

BaEu(CO<sub>3</sub>)<sub>2</sub>, optical properties, correlation to crystallographic structure, 116, 286

 $Ba_2M_2F_7Cl\ (M = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+})$ , synthesis, magnetic behavior, and structural study, 115, 98

 $Ba_2MM'F_7Cl(M,M'=Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$ , synthesis, magnetic behavior, and structural study, 115, 98

BaFe<sub>12-2x</sub>Co<sub>x</sub>Ti<sub>x</sub>O<sub>19</sub>

crystallite size and shape, determination by X-ray line broadening analysis, 114, 534

samples with composition range 0 < x > 0, synthesis for magnetic recording, 115, 347

BaFe<sub>12-2x</sub>Ir<sub>x</sub> $Me_xO_{19}$  ( $Me = Co,Zn; x \sim 0.85$ ), magnetic properties, cationic distribution in relation to, 120, 17

BaFe<sub>12</sub>O<sub>19</sub>, FT-IR skeletal powder spectra, 117, 8

Ba<sub>2</sub>Fe<sub>2</sub>Ti<sub>4</sub>O<sub>13</sub>, preparation, crystal structure, dielectric properties, and magnetic behavior, 120, 121

BaHgRuO<sub>5</sub>, synthesis and structure, 120, 223

 $[Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O]$ , hydrogen-bonding system, 114, 102 BaLaCoRuO<sub>6</sub>, structural and electronic properties, 114, 174

Ba<sub>4</sub>LiCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, 119, 359

 $BaMnO_{3-y}$  (0.22  $\leq y \leq 0.40$ ), ordering and defects, 117, 21

 $Ln_{1-x}Ba_xMnO_3$  (Ln = rare earths), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204

BaMo<sub>4</sub>O<sub>13</sub> · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 116, 95 BaMo(PO<sub>4</sub>)<sub>2</sub>, with yavapaiite layer structure, synthesis and characterization, 116, 364

Ba<sub>4</sub>NaCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, 119, 359

BaNb<sub>0.8</sub>S<sub>3-6</sub>, structure and physical properties, 115, 427

BaNbS<sub>3</sub>, structure and physical properties, 115, 427

 $[Ba_2(OH)_2(H_2O)_{10}][Se_4]$ , synthesis and crystal structure, 120, 12

BaPrO<sub>3</sub>, magnetic properties, 119, 405

REBa<sub>2</sub>SbO<sub>6</sub> (RE = Pr,Sm,Gd), synthesis and characterization, as substrates for YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-8</sub>, 116, 193

 $Ba_{5-\nu}Sr_{\nu}R_{2-x}Al_{2}Zr_{1+x}O_{13+x/2}$  (R = Gd-Lu,Y,Sc), structural study, **118,** 180

 $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$ , with  $(NH)_4FeF_6$  structure type, powder X-ray and neutron diffraction analysis, 115, 197

BaTa<sub>2</sub>S<sub>5</sub>, superconducting and normal state properties, 116, 392

Ba<sub>8</sub>Ta<sub>4</sub>Ti<sub>3</sub>O<sub>24</sub>, synthesis and crystal structure, 114, 560

Ba<sub>10</sub>Ta<sub>7.04</sub>Ti<sub>1.2</sub>O<sub>30</sub>, synthesis and crystal structure, 114, 560

BaTe2, synthesis and characterization, 117, 247

Ba<sub>2</sub>TiO<sub>4</sub>, with titanate tetrahedra, luminescence, 118, 337

Ba<sub>4</sub>Tl<sub>2</sub>CO<sub>3</sub>O<sub>6</sub>, oxycarbonates built up from rock salt layers, 116, 321 BaV<sub>3</sub>O<sub>8</sub>, hydrothermal synthesis and crystal structure, 117, 407

118, 241

 $Ba_xV_8O_{16}$  (x = 1.09(1)), synthesis and crystal structure, 115, 88  $BaVO(PO_4)(H_2PO_4) \cdot H_2O$ , synthesis, structure, and magnetism,

Ba<sub>8</sub>(VO)<sub>6</sub>(PO<sub>4</sub>)<sub>2</sub>(HPO<sub>4</sub>)<sub>11</sub> · 3H<sub>2</sub>O, hydrothermal synthesis and crystal structure, **116**, 77

Ba(VO)<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(HSeO<sub>3</sub>)<sub>2</sub>, hydrothermal synthesis and crystal structure, **116**, 77

 $Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O$ , hydrothermal synthesis and crystal structure, 114, 359

BaY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363

Ba<sub>2</sub>ZnN<sub>2</sub>, synthesis and crystal structure, 119, 375

 $Bi_{13}Ba_{2}Fe_{13}O_{66}$ , from 2201–0201 intergrowth  $Bi_{2}Sr_{4}Fe_{2}O_{10}$ , synthesis, 118. 357

 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$ , with intergrowths of 2201 and 0201 structure, synthesis, **118**, 227

Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80

Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub> intergrowth between 123 and 0201 structures, **115**, 1 Hg<sub>2-x</sub> $M_x$ Ba<sub>2</sub>Pr<sub>2</sub>Cu<sub>2</sub>O<sub>10- $\delta$ </sub> (M = Cu,Pr), synthesis and crystal structure, **114**, 230

 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$ , synthesis and characterization, 115, 525

Hg<sub>1-x</sub>Tl<sub>x</sub>Sr<sub>4-y</sub>Ba<sub>y</sub>Cu<sub>2</sub>CO<sub>3</sub>O<sub>7-δ</sub>, modulated superconducting oxides, structural aspects, 120, 332

 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2$  (0 < x < 0.4), synthesis and structure, 114, 399  $K_2BaSnTe_4$ , synthesis and characterization, 117, 247

 $La_4BaCu_5O_{12}$ , insulating, prepared by reduction of metallic  $La_4BaCu_5O_{13.1}$ , analysis, 114, 95

 $La_2Ba_2Cu_2Sn_2O_{11}$ , high-temperature transport and defect studies, 119, 80

La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80

LaSrFeO<sub>4</sub>, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456

 $Nd_{1-x}Ba_xTiO_3$  ( $0 \le x \le 1$ ), structure, transport, and magnetic properties, 114, 164

 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$ , 120, 146

Sr<sub>v</sub>Ba<sub>1-v</sub>PrO<sub>3</sub>, magnetic properties, 119, 405

Tb<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, synthesis and crystal structure, 117, 213

Ti<sub>2</sub>(Ba<sub>2</sub>Gd)Gd<sub>2-x</sub>Ce<sub>x</sub>Cu<sub>2</sub>O<sub>13</sub>, design and synthesis, 114, 57

YBaCoCu<sub>1-x</sub>Fe<sub>x</sub>O<sub>5</sub>, magnetic behavior, 115, 514

Y<sub>2</sub>Ba<sub>3</sub>Cu<sub>3</sub>Co<sub>2</sub>O<sub>12</sub>, synthesis by solid state reaction, 115, 407

YBaCuFeO<sub>5</sub>, crystal and magnetic structure, 114, 24

YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>, oxygen nonstoichiometry in, vapor pressure scanning, 119, 62

 $YBa_2Cu_3O_{7-\delta}$ , films, perovskites as substrates for, synthesis and characterization, **116**, 193

YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>, sulfur-doped pellets, copper whisker growth from inside, 117, 151

Y<sub>2</sub>BaCuO<sub>5</sub>-YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>, quantitative X-ray phase analysis and EPR spectra, **116**, 136

Basicity

on surface of  $Me(OH)_2$ -SiO<sub>2</sub> (Me = Ca,Mg,Sr) mixtures, changes from mechanical activation, 115, 390

Beryllium

Na<sub>2</sub>BeGeO<sub>4</sub>, structure and ionic conductivity, 118, 62

TlBeAsO<sub>4</sub> and TlBePO<sub>4</sub>, stereochemical activity of thallium (I) lone pair, 114, 123

Betaine

(CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>COO · (COOH)<sub>2</sub> · H<sub>2</sub>O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129

2,2'-Bipyridyl

stepwise reaction with CuCl<sub>2</sub> · 2H<sub>2</sub>O in solid state, 119, 299

Bismuth

Ba<sub>2-x</sub>Bi<sub>x</sub>Cu<sub>2</sub>O<sub>5</sub> (0  $\le x \le 1.5$ ), synthesis and characterization, **114**, 585 BaBiO<sub>3-8</sub> (0  $\le \delta \le 0.5$ ), analysis, **117**, 55

BaBiO<sub>2</sub>Cl, cation ordering, 117, 201

 $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$ , with  $(NH)_4FeF_6$  structure type, powder X-ray and neutron diffraction analysis, 115, 197

 $Bi_{13}Ba_{2}Fe_{13}O_{66},\,from\,\,2201-0201\,\,intergrowth\,\,Bi_{2}Sr_{4}Fe_{2}O_{10},\,\textbf{118,}\,357$ 

BiCaRu<sub>2</sub>O<sub>7-v</sub>, preparation and structure, 119, 254

Bi<sub>2</sub>Fe<sub>4-x</sub>Al<sub>x</sub>O<sub>9</sub>, structural and magnetic studies, **114**, 199

BiLa<sub>2</sub>O<sub>4.5</sub>, average structure and superstructure, X-ray powder and electron diffraction studies, 116, 72

Bi<sub>2</sub>MoO<sub>6</sub>, phase transitions, structural changes in, analysis, letter to editor, 119, 210

 $Bi_{2-x}Nb_xO_{3+x}$ , solid solution, electron diffraction study, 119, 311

Bi<sub>3</sub>NF<sub>6</sub>, synthesis and structure, 114, 73

 $Bi_2O_4$ , crystal structure with  $\beta$ -Sb<sub>2</sub>O<sub>4</sub>-type structure, 116, 281

 $Bi_3RE_3O_{12}$  (RE = Y,La,Pr-Lu), related phases, synthesis and characterization, 116, 68

Bi<sub>2</sub>O<sub>3</sub>-CaO, rhombohedral  $\beta$  type solid solutions in, TEM analysis, 118.66

BiOCuSe, powder X-ray and IR studies, 118, 74

 $Bi_2O_3-Ln_2O_3$  (Ln = Sm,Eu,Gd,Tb,Dy), low-temperature stable phase, **120**, 32

Bi<sub>2</sub>O<sub>3</sub>-SrO, rhombohedral  $\beta$  type solid solutions in, TEM analysis, 118, 66

Bi<sub>1.8</sub>Pb<sub>0.4</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10+δ</sub>, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120

(BiS)<sub>1.11</sub>NbS<sub>2</sub>, layered composite crystal structure, 116, 61

 $(BiS)_{1+\delta}(Nb_{1+\epsilon}S_2)_n$ , misfit layer structures, analysis by TEM and XRD, 115, 274

 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$ , with intergrowths of 2201 and 0201 structure, synthesis, 118, 227

BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, chemical diffusion and synthesis kinetics, 116, 314
Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120

 $Bi_{16}Sr_{28}Cu_{17}O_{69+\delta}$ , synthesis and characterization, 119, 169

 $Bi_2Sr_4Fe_2O_{10}$ , 2201-0201 intergrowth,  $Bi_{13}Ba_2Fe_{13}O_{66}$  from, synthesis, 118, 357

BiTeX (X = Cl,Br,I), crystal structure, determination by powder X-ray diffraction, 114, 379

Bi<sub>2</sub>TeO<sub>5</sub>-Bi<sub>2</sub>Te<sub>2</sub>O<sub>7</sub>, phase region, analysis by electron microscopy, 116, 240

Bi<sub>4</sub>Te<sub>2</sub>O<sub>9</sub>Br<sub>2</sub>, pyroelectric phase, crystal structure, 116, 406

 $Bi_2Ti_4O_{11}$ , phase transition, in situ analysis, 119, 281

 $M^{1}\text{Bi}(WO_{4})_{2}$  ( $M^{1} = \text{Li,Na,K}$ ), vibrational properties, 117, 177

(Ca<sub>0.9</sub>Bi<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature thermoelectric performance, **120**, 105

 $(Hg_{1-x}Bi_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$ , synthesis and characterization, 115, 525  $HgBiSr_7Cu_2SbO_{15}$ , double cationic ordering, 116, 53

Mo-Bi-O system, structural modeling, letter to editor, 119, 428 Bonding

metal-metal

Book reviews

role in TiS, VS, TiSe, and VSe monochalcogenides, 114, 346 tetrahedral clusters of GaMo<sub>4</sub>S<sub>8</sub>-type compounds, analysis, 120, 80 in Zintl phases, analysis by <sup>119</sup>Sn Mössbauer spectroscopy, 118, 397

Advances in Solid State Chemistry, Volume 3. C. R. A. Catlow (Ed.), 1993, 114, 300

Advances in the Synthesis and Reactivity of Solids, Volume 2. T. A. Mallouk (Ed.), 1994, 114, 300

Handbook of Molecular Sieves, R. Szostak, 1992, 114, 300

Boron

BN, crystalline cubic thin films, hot-filament-assisted electron beam deposition, 118, 99

-carbon-nitrogen system, properties and preparation, 114, 258

CsNbOB<sub>2</sub>O<sub>5</sub>, synthesis and characterization, 120, 74

CsTaOB<sub>2</sub>O<sub>5</sub>, synthesis and characterization, 120, 74

Li(H<sub>2</sub>O)<sub>4</sub>B(OH)<sub>4</sub> · 2H<sub>2</sub>O, crystal structure and dehydration process, 115, 549

Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>Br, high-temperature single crystal X-ray diffraction, 120, 60 Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>I, high-temperature single crystal X-ray diffraction, 120, 60 Mn<sub>2</sub>OBO<sub>3</sub>, synthesis, crystal structure, band calculations, and magnetic susceptibility, 114, 311

TiO<sub>2</sub>-NaPO<sub>3</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> system, optically nonlinear glasses, Raman scattering and XAFS analysis, 120, 151

ZnO-B2O2-SiO2-P2O5, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in,

## Bromine

BiTeBr, crystal structure, determination by powder X-ray diffraction, 114, 379

Bi<sub>4</sub>Te<sub>2</sub>O<sub>9</sub>Br<sub>2</sub>, pyroelectric phase, crystal structure, 116, 406

 $ABBr_4$  (A = Mg,Mn,Zn; B = Li,Na), nonceramic preparation techniques, 117, 34

 $Me^{+}Br - CuX_2 - H_2O$  ( $Me^{+} = K^{+}, NH_4^{+}Rb^{+}, Cs^{+}$ ), double salts, 114, 385 CdBr2, solid state reactions with 8-hydroxyquinoline, 117, 416 CsErTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274

CsGeBr3, pressure-induced phase transition, analysis by X-ray diffraction and Raman spectroscopy, 118, 20

InCdBr<sub>3</sub>, synthesis, crystal structure, and electronic structure, 116, 45 Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>Br, high-temperature single crystal X-ray diffraction, **120**, 60 Nb<sub>3</sub>SBr<sub>7</sub>, synthesis, crystal structure, and magnetic susceptibility, **120.** 311

 $M_2RETa_6Br_{18}$ ,  $MRETa_6Br_{18}$ , and  $RETa_6Br_{18}$  (M = monovalent cation; RE = rare earth), crystal structure, 118, 274

 $M_2RE$ Ta<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation; RE = rare earths), synthesis and crystal structure, 120, 43

 $\mathbf{C}$ 

# Cadmium

Ca<sub>10-x-v</sub>Cd<sub>x</sub>Pb<sub>v</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, solid solutions, analysis by X-ray and IR spectroscopy, 116, 8

 $CdX_2$  (X = Cl,Br,I), solid state reactions with 8-hydroxyquinoline, **117**, 416

CdCr<sub>2</sub>Se<sub>4</sub>, lattice dynamics, 118, 43

 $CdGa_2X_4$  (X = S,Se), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442

Cd<sub>2-x</sub>GeO<sub>4-x-3y</sub>N<sub>2y</sub>, preparation and characterization, 119, 304

CdS particles, preparation in silica glasses by sol-gel method, 118, 1 Co<sub>r</sub>Cd<sub>1-r</sub>In<sub>2</sub>S<sub>4</sub>, spinel solid solutions, structural, magnetic, and optical properties, 114, 524

InCdBr<sub>3</sub>, synthesis, crystal structure, and electronic structure, 116, 45 Slater functions, formulation by distance between subspaces, 116, 275 Calcium

 $(1 - x)Ag_2SO_4$ ~(x)CaSO<sub>4</sub> (x = 0.01-0.20), defect chemistry, 116, 232 BiCaRu<sub>2</sub>O<sub>7-y</sub>, preparation and structure, 119, 254

 $Bi_2O_3$ -CaO, rhombohedral  $\beta$  type solid solutions in, TEM analysis, 118,66

 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$ , phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, chemical diffusion and synthesis kinetics, 116, 314

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120

BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459

Ca<sub>4</sub>Al<sub>6</sub>O<sub>16</sub>S, crystal structure, 119, 1

Ca<sub>10-x-y</sub>Cd<sub>x</sub>Pb<sub>y</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, solid solutions, analysis by X-ray and IR spectroscopy, 116, 8

Ca<sub>3</sub>CoN<sub>3</sub>, preparation, crystal structure, electrical properties, and magnetic properties, 119, 161

CaCu<sub>0.15</sub>Ga<sub>3.85</sub>, crystal structure, analysis by powder X-ray diffraction data, 114, 342

CaCuO2-SrCuO2 infinite-layer thin film heterostructures, growth monitored by RHEED, 114, 190

CaFeTi<sub>2</sub>O<sub>6</sub>, high-pressure synthesis and crystal structure, 114, 277 Ca<sub>3</sub>HfSi<sub>2</sub>O<sub>9</sub>, structure determination from powder diffraction, 115, 464 CaMg<sub>2</sub>Al<sub>16</sub>O<sub>27</sub>

phase relationships in CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, 120, 358 structure refinement, 120, 364

 $Ca_2Mg_2Al_{28}O_{46}$ 

phase relationships in CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, 120, 358 structure refinement, 120, 364

 $(Ca_{0.9}M_{0.1})MnO_3$  (M = Y,La,Ce,Sm,In,Sn,Sb,Pb,Bi), electrical transport properties and high-temperature thermoelectric performance, **120,** 105

 $Ln_{1-x}Ca_xMnO_3$  (Ln = rare earths), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204

CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, Al-rich part, phase relationships, 120, 358 Ca(OH)2-SiO2, mixtures, surface changes in basicity and species, role of mechanical activation, 115, 390

Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, induced radiation damage, analysis by TEM, 116,

 $Ca_xSn_xGa_{8-2x}O_{12}$  (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of Sn4+ on, 118, 6

γ-CaSO<sub>4</sub>, CaSO<sub>4</sub> · 0.5H<sub>2</sub>O, and CaSO<sub>4</sub> · 0.6H<sub>2</sub>O, crystal structure, determination by powder diffraction methods, 117, 165

 $Ca_{1-x}Sr_xNiN$  ( $0 \le x \le 0.5$ ), solid solutions, preparation, crystal structure, and properties, 115, 353

(Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372

Ca<sub>4</sub>Tl<sub>2</sub>CO<sub>3</sub>O<sub>6</sub>, oxycarbonates built up from rock salt layers, 116, 321 CaTl<sub>2</sub>O<sub>4</sub> and Ca<sub>2</sub>Tl<sub>2</sub>O<sub>6</sub>, characterization as chemical twins of rock salt structure, 114, 428

Ca<sub>3</sub>Tl<sub>2</sub>O<sub>6</sub>, synthesis and crystal structure, 115, 508

Ca<sub>3</sub>Tl<sub>4</sub>O<sub>9</sub>, isolation, 119, 134

CaY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363

Ca<sub>5</sub>Y<sub>4</sub>S<sub>11</sub>, NaCl-type structure, Rietveld refinement, 119, 45

Ca<sub>3</sub>ZrSi<sub>2</sub>O<sub>9</sub>, structure determination from powder diffraction, 115, 464 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, 114, 369

La<sub>1-x</sub>Ca<sub>x</sub>CrO<sub>3-δ</sub>, chemical diffusion, 115, 152

La<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub> bulk samples, giant magnetoresistance, letter to editor, 114, 297

LaSrFeO<sub>4</sub>, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456

-lead, hydroxyapatite, cation effects in oxidative coupling of methane, 114, 138

Li<sub>2</sub>Ca<sub>2</sub>Si<sub>5</sub>O<sub>13</sub>, crystal structure determination, 114, 512

 $NaCa_2M_2^{2+}$  (AsO<sub>4</sub>), ( $M^{2+} = Mg,Ni,Co$ ), structure, 118, 267

Nd<sub>1-r</sub>Ca<sub>x</sub>FeO<sub>3-v</sub>, nonstoichiometry and physical properties, analysis,

 $Nd_{1-x}Ca_xTiO_3$  ( $0 \le x \le 1$ ), structure, transport, and magnetic properties, 114, 164

Pr<sub>0.7</sub>Sr<sub>0.05</sub>Ca<sub>0.25</sub>MnO<sub>3-8</sub>, effects of spectacular giant magnetoresistance,

Sr<sub>2</sub>CaIrO<sub>6</sub>, preparation and stabilization by high oxygen pressure, 115, 447

YCa<sub>2</sub>SbFe<sub>4</sub>O<sub>12</sub>, magnetic ordering, 115, 435

Calorimetry

differential scanning,  $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18}\cdot 2H_2O$ , 114, 42

Capacitance-voltage curve

MOS capacitors passivated by fluoride-containing ZnO-B<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub> glasses, OH-related capacitance-voltage recovery effect in, 118, 212

Capacitors

MOS, passivation by fluoride-containing ZnO-B<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub> glasses, OH-related capacitance-voltage recovery effect in, **118**, 212

Carbon

Al<sub>28</sub>O<sub>21</sub>C<sub>6</sub>N<sub>6</sub>, diamond-related compound in system Al<sub>2</sub>O<sub>3</sub>-Al<sub>4</sub>C<sub>3</sub>-AlN, identification, **120**, 211

 $Al_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , synthesis and crystal structure, 120, 197

BaEu(CO<sub>3</sub>)<sub>2</sub>, optical properties, correlation to crystallographic structure, **116**, 286

[Ba<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>][Fe(CN)<sub>5</sub>NO]<sub>2</sub>3H<sub>2</sub>O], hydrogen-bonding system, **114**, 102 Ba<sub>4</sub>LiCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, **119**, 359

Ba<sub>4</sub>NaCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, 119, 359

CCl<sub>4</sub>, reaction with TT-Phase NbO, kinetic mechanism, **117**, 379 (CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>COO · (COOH)<sub>2</sub> · H<sub>2</sub>O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129

[n-C<sub>0</sub>H<sub>10</sub>NH<sub>3</sub>]<sub>2</sub>CuCl<sub>4</sub>, characterization by FTIR, 117, 97

 $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$ , crystal structure, determination from powder data, 117, 103

CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, transport, optical, and magnetic properties, 114, 159

 $(C_{18}H_{30}N_3)_2\cdot[Si_8O_{18}(OH)_2]\cdot 41H_2O,$  X-ray diffraction and NMR analysis, 120, 231

Co-Li<sub>2</sub>CO<sub>3</sub>, phase composition, microstructure, and sintering, erratum, 116, 15; 117, 433

Cu(C<sub>4</sub>H<sub>5</sub>N<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, synthesis and characterization, 117, 333

 $Cu^{11}(1,4\cdot C_4H_4N_2)(C_4O_4)(OH_2)_4$ , synthesis and structure determination with silica gels, 117, 256

CuSr(HCOO)<sub>4</sub>, crystal structure and thermal decomposition, 117, 145 decomposition from CO<sub>2</sub>, analysis with Ni<sub>0.39</sub>Fe<sub>2.61</sub>O<sub>4-6</sub>, X-ray diffraction and Mössbauer studies, 120, 64

GdRuC2, with filled NiAs structure, 118, 158

 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$ , modulated superconducting oxides, structural aspects, **120**, 332

 $LaMn_{11}C_{2-x}$ , preparation, structure refinement, and properties, 114, 66  $La_2O_2CN_2$ , synthesis and crystal structure, 114, 592

 $Na_3La_2(CO_3)_4F$ :  $Eu^{3+}$ , optical properties, correlation to crystallographic structure, 116, 286

 $N(CH_3)_4H_2PO_4 \cdot H_2O$ , FT-IR and polarized Raman spectra, 120, 343 [ $NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3$ ] $_2P_6O_{18} \cdot 2H_2O$ , structural, DSC, and IR analysis, 114, 42

-nitrogen polymers, high-pressure synthesis, 117, 229

 $(M^{2+})_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{2+} = Cu,Zn,Co; M^{3+} = Cr)$ , characterization, 119, 246

ScCrC<sub>2</sub>, preparation, properties, and crystal structure, 119, 324

 $Si_{1-x}C_x$ : H alloys, structural properties and chemical ordering, 117, 427  $Sn_4S_9[(C_3H_7)_4N]_2$ , preparation and structural characterization, 114, 506

 $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH]$ , preparation and structural characterization, **114**, 506

(Sr[Fe(CN)<sub>5</sub>NO] · 4H<sub>2</sub>O), crystal structure, determination by X-ray diffraction, 120, 1

Sr<sub>5</sub>Mn<sub>4</sub>CO<sub>3</sub>O<sub>10</sub>, synthesis and structure, 120, 279

Sr<sub>2</sub>RuO<sub>4</sub> · 0.25 CO<sub>2</sub>, synthesis, application in synthesis of Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>, 116. 141

 $A_4\text{Tl}_2\text{CO}_3\text{O}_6$  ( $A = \text{Ca}_6\text{Sr},\text{Ba}$ ), oxycarbonates built up from rock salt layers, 116, 321

 $Tm_2Fe_2Si_2C$ , preparation, structure refinement, and properties, **114**, 66  $U_2Fe_{17-x}M_xC_y$  (M = Al,Si, and Ge), magnetic properties, **115**, 13 VC, synthesis by temperature programmed reduction, **120**, 320

 $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}]$ , synthesis, crystal structure, and structural correlations with  $V_2O_5$  and other vanadyl compounds, 120, 137

VO(HCO<sub>2</sub>)<sub>2</sub> · H<sub>2</sub>O, compounds based on double layers in, synthesis, 117, 136

 $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$ , synthesis and stability, 117, 275

Cations

positive mixed effect on Ag<sub>2</sub>SO<sub>4</sub>-Tl<sub>2</sub>SO<sub>4</sub>, 114, 271

Ceramics

mixed valent nickel and manganese oxides, 116, 355

and oxides, effects of ultrasound, macro- and microscopic analysis, 115, 532

Cerium

BaCe<sub>v</sub>Pr<sub>1-v</sub>O<sub>3</sub>, magnetic properties, 119, 405

(Ca<sub>0.9</sub>Ce<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature thermoelectric performance, **120**, 105

Ce<sup>4+</sup>, doped La<sub>1.2</sub>Tb<sub>0.8</sub>CuO<sub>4+δ</sub>, derivatives, structural and conducting properties, **115**, 332

CeAgSb<sub>2</sub>

with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441

 $CeT_2Al_{20}$  (T = Ti,Mo,W), with  $CeCr_2Al_{20}$ -type structure, 114, 337  $Ce_2Ba_2Cu_2Ti_2O_{11-\delta}$ , synthesis, structure, and superconductivity, 119,

CeCr<sub>2</sub>Al<sub>20</sub>, related structure,  $AT_2$ Al<sub>20</sub> (A = La-Lu,U; T = Ti,Ta,Mo,W) ternary aluminides with, **114**, 337

CeCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

Ln<sub>2-x</sub>Ce<sub>x</sub>CuO<sub>4</sub>, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491

 $Ce_{0.818}Gd_{0.182}O_{1,909-y}$ , nonstoichiometric 10 mol%, phase diagram, 117, 392

CeK<sub>2</sub>(NO<sub>3</sub>)<sub>6</sub>, double valence change for cerium during thermal decomposition, letter to editor, **115**, 295

CeNbO<sub>4</sub>, relationship between covalence and displacive phase transition temperature, 116, 28

Ce<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

 $(1-x)CeO_2 \cdot xYO_{1.5}$ , microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290

CeO<sub>2</sub>-δYO<sub>21.5</sub>, single crystal X-ray study, 115, 23

 $CePd_{2-x}As_2$ , with  $ThCr_2Si_2$  structure, structure refinement, 115, 37  $CePd_3As_2$  arsenides, 115, 37

Ce<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203

 $MCeTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274

 $M_2$ CeTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure. **120.** 43

CeVO<sub>3</sub>, magnetic and transport properties, 119, 24

 $Cs_3CeCl_6 \cdot 3H_2O$ , thermal dehydration and crystal structure, **116**, 329  $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}La$ ,  $CuO_{4+\delta}$ , synthesis and characterization, **116**, 347

 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$ , **120**, 146  $Nd_{2-x}Ce_rCuO_4$ , FT-IR skeletal study, **119**, 36

Ti<sub>2</sub>(Ba<sub>2</sub>Gd)Gd<sub>2-x</sub>Ce<sub>x</sub>Cu<sub>2</sub>O<sub>13</sub>, design and synthesis, 114, 57

Cesium

[Cs\*(15-crown-5)(18-crown-6)e<sup>-</sup>]<sub>6</sub> · (18-crown-6), properties, 117, 309 Cs<sub>2</sub>[AuCl<sub>2</sub>][AuCl<sub>4</sub>], local electronic anisotropy, probing with anomalous scattering diffraction, 118, 383

Cs<sub>3</sub>LnCl<sub>6</sub> · 3H<sub>2</sub>O (Ln = La-Nd), thermal dehydration and crystal structure, **116**, 329

CsCl/TbCl<sub>3</sub> systems, ternary chlorides in, analysis, 115, 484

 $CsX - CuX_2 - H_2O(X^- = Cl^-.Br^-)$ , double salts, 114, 385

CsErTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274

CsGeBr<sub>3</sub>, pressure-induced phase transition, analysis by X-ray diffraction and Raman spectroscopy, 118, 20

CsHSO<sub>4</sub>

phase transitions, 117, 412

thermally induced phase transitions, 117, 414

Cs<sub>9</sub>Mo<sub>9</sub>Al<sub>3</sub>P<sub>11</sub>O<sub>59</sub> with tunnel structure, isolation, 114, 451

CsMo<sub>2</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, mixed valent monophosphate with layer structure, 116, 87

CsNbOB<sub>2</sub>O<sub>5</sub>, synthesis and characterization, 120, 74

Cs<sub>4</sub>Sb<sub>4</sub>O<sub>8</sub>(Si<sub>4(1-x)</sub>Ge<sub>4x</sub>O<sub>12</sub>), solid solution, electron and X-ray diffraction and <sup>29</sup>Si MAS NMR analysis, **114**, 528

 $CsRETa_6Br_{18}$  (RE = La-Lu,Y), crystal structure, 118, 274

 $Cs_2RETa_6Br_{18}$  (RE = Eu, Yb), crystal structure, 118, 274

CsTaOB<sub>2</sub>O<sub>5</sub>, synthesis and characterization, 120, 74

Cs(TiAs)O<sub>5</sub>, crystal structure, 120, 299

Cs(TiP)O<sub>5</sub>, crystal structure, 120, 299

 $\alpha$ - and  $\beta$ -CsTi<sub>3</sub>P<sub>5</sub>O<sub>19</sub>, synthesis and crystal structure, 115, 120

Cs<sub>2</sub>V<sub>4</sub>O<sub>9</sub>, synthesis, crystal structure, and magnetic properties, 115, 174

Cs<sub>2</sub>(WO<sub>3</sub>)<sub>3</sub>SeO<sub>3</sub>, synthesis, crystal structure and properties, 120, 112
 Cs<sub>2</sub>ZrCl<sub>6</sub>, green-to-blue up-conversion emission from U<sup>4+</sup> ion in, effect of temperature, 116, 113

YbI<sub>2</sub>-CsI, phase diagrams, measurement and calculation, 114, 146 Channel networks

two-dimensional, in KNB<sub>5</sub>GeO<sub>16</sub> · 2H<sub>2</sub>O, 115, 373

Chemical ordering

 $Si_{1-x}C_x$ : H alloys, **117**, 427

Chemical reactivity

 $TIV_{5-y}Fe_yS_8$  (y = 0.5-1.5), 119, 147

Chevkinites

Pr<sub>4</sub>V<sub>5</sub>Si<sub>4</sub>O<sub>22</sub> with related structure, 116, 211

Chevrel phases

 $M_x$ Mo<sub>6</sub>S<sub>8</sub>(M = Sn,Co,Ni,Pb,La,Ho), and tungsten analogs, amorphous precursors for low-temperature preparation, 117, 269

Chlorine

BaBiO<sub>2</sub>Cl, cation ordering, 117, 201

 $Ba_2M_2F_7Cl\ (M=Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$ , synthesis, magnetic behavior, and structural study, **115**, 98

 $Ba_2MM'F_7Cl(M,M'=Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$ , synthesis, magnetic behavior, and structural study, **115**, 98

BiTeCl, crystal structure, determination by powder X-ray diffraction, 114, 379

CCl<sub>4</sub>, reaction with TT-Phase NbO, kinetic mechanism, 117, 379

CdCl<sub>2</sub>, solid state reactions with 8-hydroxyquinoline, 117, 416

[n-C<sub>9</sub>H<sub>19</sub>NH<sub>3</sub>]<sub>2</sub>CuCl<sub>4</sub>, characterization by FTIR, 117, 97

 $ABCl_4$  (A = Mg,Mn,Zn; B = Li,Na), nonceramic preparation techniques, 117, 34

 $Me^+Cl - CuX_2 - H_2O$  ( $Me^+ = K^+, NH_4^+Rb^+, Cs^+$ ), double salts, 114, 385

 $ACI/TbCl_3$  (A = K,Rb,Cs), ternary chlorides in, analysis, 115, 484

Cs<sub>2</sub>[AuCl<sub>2</sub>][AuCl<sub>4</sub>], local electronic anisotropy, probing with anomalous scattering diffraction, 118, 383

Cs<sub>3</sub>LnCl<sub>6</sub> · 3H<sub>2</sub>O (Ln = La-Nd), thermal dehydration and crystal structure, 116, 329

Cs<sub>2</sub>ZrCl<sub>6</sub>, green-to-blue up-conversion emission from U<sup>4+</sup> ion in, effect of temperature, 116, 113

Cu(C<sub>4</sub>H<sub>5</sub>N<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, synthesis and characterization, 117, 333

CuCl<sub>2</sub> · 2H<sub>2</sub>O, stepwise reaction with 2,2'-bipyridyl in solid state, 119, 299

MgO-MgCl<sub>2</sub>-H<sub>2</sub>O, chemical reactions, analysis by time-resolved synchrotron X-ray powder diffraction, **114**, 556

NaCl, related U, Np, and Pu compounds, thermodynamic and magnetic properties, 115, 66

NaClO<sub>3</sub>, high-pressure behavior, 118, 378

NaSn<sub>2</sub>Cl<sub>5</sub>, synthesis and crystal structure, 115, 158

Chromium

 $Ba_3Cr_2MO_9$  (M = Mo, W), structure and magnetic properties, 120, 238  $CdCr_2Se_4$ , lattice dynamics, 118, 43

 $CeCr_2Al_{20}$ ,  $AT_2Al_{20}$  (A = rare earths,U; T = Ti,Ta,Mo,W) ternary aluminides with, 114, 337

CoCr<sub>2</sub>S<sub>4</sub>, lattice dynamics, 118, 43

(Cr<sub>1-x</sub>Fe<sub>x</sub>)<sub>3</sub>Te<sub>4</sub>, magnetic properties, **120**, 49

CrO<sub>2</sub>-CrOOH system, CrO<sub>2</sub> from decomposition, interconversion in, 119, 13

 $(M^{2+})_6 Cr_2(OH)_{16}CO_3 \cdot 4H_2O \ (M^{2+} = Cu,Zn,Co)$ , characterization, 119, 246

CrOOH-CrO<sub>2</sub> system, CrO<sub>2</sub> from decomposition, interconversion in, 119, 13

Cr<sub>2</sub>S<sub>3</sub>-CuS, copper-chromium sulfide spinel and thermal decomposition reactions in, 117, 122

Cr<sub>2</sub>Sn<sub>3</sub>Se<sub>7</sub>, structural determination and magnetic properties, 115,

 $M^{I}Cr(WO_4)_2$  ( $M^{I} = Li,Na,K$ ), vibrational properties, 117, 177

-Cu-Al spinel oxide semiconductors, compensated, analysis, 120, 388 CuCrP<sub>2</sub>S<sub>6</sub>, copper disorder, stacking distortions, and magnetic ordering, 116, 208

CuCr<sub>2</sub>S<sub>4</sub>, spinel formation, thermal decomposition reactions in crystalline mixtures, 117, 122

HgCr<sub>2</sub>Se<sub>4</sub>, lattice dynamics, 118, 43

induction of structural changes in TiO<sub>2</sub>, analysis by X-ray diffraction, 114, 364

 $K_{3/2}Cr_{1/2}Te_{3/2}O_6\cdot 0.5H_2O,$  electrical properties and structural characterization,  $116,\,290$ 

 $La_{1-x}Ca_xCrO_{3-\delta}$ , chemical diffusion, 115, 152

LaCo<sub>1-t</sub>Cr<sub>t</sub>O<sub>3</sub>, reduction and reoxidation properties, 119, 271

LaCrO<sub>3</sub>, oxygen ion migration, 118, 125

 $(La_{1-x}Nd_x)CrO_3$   $(0 \le x \le 1.0)$ , electrical properties and crystal structure, relationship, **114**, 236

Li<sub>0.5</sub>(FeCr)<sub>x</sub>Ga<sub>2.5-2x</sub>O<sub>4</sub>, tetrahedral 3d<sup>5</sup> and 3d<sup>5</sup> or 3d<sup>3</sup> octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, 120, 244

Mn<sub>3</sub>Al<sub>2-x</sub>Cr<sub>x</sub>Ge<sub>3</sub>O<sub>12</sub>, X-ray absorption spectroscopic and magnetic analysis, **118**, 261

Na<sub>x</sub>Cr<sub>x</sub>Ti<sub>8-x</sub>O<sub>16</sub>, tunnel structure analysis for stability and sodium ion transport, **116**, 296

 $Nd(Cr_{1-x}Mn_x)O_3$  ( $0 \le x \le 0.6$ ), cation-anion-cation overlap and electrical properties, relationship, 118, 367

Ni-Al-Cr, synthesis and characterization, 118, 285

Pb<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, phase transformation, 116, 179

ScCrC<sub>2</sub>, preparation, properties, and crystal structure, 119, 324

 $Sn_{1-p}Cr_2S_{4-p}$  channel-type composite crystal, X-ray and electron diffraction study, 115, 7

Sr<sub>2</sub>Zn<sub>0.2</sub>Ga<sub>0.8-x</sub>Mn(Cr)<sub>x</sub>Te<sub>0.2</sub>Sb<sub>0.8</sub>O<sub>6</sub>, mixed valent oxide ceramic, superconducting properties, 116, 355

 $Sr_2Zn_{0.2}Ga_{0.8}$ - $_xMn(Cr)_xW_{0.2}Ta_{0.8}O_6$ , mixed valent oxide ceramic, superconducting properties, 116, 355

ThCr<sub>2</sub>Si<sub>2</sub>, CePd<sub>2-x</sub>As<sub>2</sub> with related structure, 115, 37

 $[Zn_2Cr(OH)_6]X \cdot nH_2O$ , where  $X^- = 1/2 \text{ mal}^{2-}$ , cis- $[Cr(mal)_2(H_2O)_2]^-$ , and  $1/3[Cr(mal)_3]^{3-}$  (mal = malonate), malonate intercalation into, 119, 331

ZnCr<sub>2</sub>S<sub>4</sub>, lattice dynamics, 118, 43

ZnCr<sub>2</sub>Se<sub>4</sub>, lattice dynamics, 118, 43

Citric acid

mediated synthesis of  $\beta$ -Co(OH)<sub>2</sub>, 114, 550

Cobal

 $Ba_2CoM'F_7Cl\ (M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+})$ , synthesis, magnetic behavior, and structural study, **115**, 98

Ba<sub>2</sub>Co<sub>2</sub>F<sub>7</sub>Cl, synthesis, magnetic behavior, and structural study, 115, 98

BaCoO<sub>3-v</sub>, HREM study, 120, 327

BaFe<sub>12-2x</sub>Co<sub>x</sub>Ti<sub>x</sub>O<sub>19</sub>

crystallite size and shape, determination by X-ray line broadening analysis, 114, 534

samples with composition range 0 < x < 1, synthesis for magnetic recording, 115, 347

BaFe<sub>12-2x</sub>Ir<sub>x</sub>Co<sub>x</sub>O<sub>19</sub> ( $x \sim 0.85$  and  $x \sim 0.50$ ), magnetic properties, cationic distribution in relation to, **120**, 17

BaLaCoRuO<sub>6</sub>, structural and electronic properties, 114, 174

-boron-nitrogen system, properties and preparation, 114, 258

Ca<sub>3</sub>CoN<sub>3</sub>, preparation, crystal structure, electrical properties, and magnetic properties, 119, 161

CoAs<sub>2</sub>O<sub>6</sub>, structural and magnetic properties, 118, 402

Co<sub>2</sub>As<sub>2</sub>O<sub>7</sub>, magnetic properties and structures, 115, 229

Co<sub>x</sub>Cd<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub>, spinel solid solutions, structural, magnetic, and optical properties, 114, 524

CoCr<sub>2</sub>S<sub>4</sub>, lattice dynamics, 118, 43

 $\text{Co}_x\text{Cu}_{1-x}\text{Fe}_2\text{O}_4$  ( $0 \le x < 0.3$ ), thermal behavior and magnetic properties, *erratum*, 117, 64; 117, 433

Co-Li<sub>2</sub>CO<sub>3</sub>, phase composition, microstructure, and sintering, *erratum*, **116**, 15; **117**, 433

Co<sub>x</sub>Mo<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, 117, 269

Ln<sub>2</sub>MCo<sub>2</sub>O<sub>7</sub> (Ln = Sm,Gd; M = Sr,Ba), synthetic, structural, electrical, and magnetic properties, **114**, 286

β-Co(OH)<sub>2</sub>, organic additive-mediated, synthesis, 114, 550

 $Co_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{3+} = Cr)$ , characterization, 119, 246  $Co_2(OH)PO_4$ , structure-directing effect of organic additives, 114, 151

Co(ReO<sub>4</sub>)<sub>2</sub> · 4H<sub>2</sub>O, preparation and crystal structure determination, 115, 255

AA'CoRuO<sub>6</sub> (AA' = Sr,Ba,La), structural and electronic properties, 114. 174

CoSeO<sub>3</sub>-II, crystal structure, 120, 182

CoU<sub>2</sub>O<sub>6</sub>, antiferromagnetic ordering, 114, 595

Co<sub>x</sub>W<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, 117, 269

LaCo<sub>1-t</sub>Cr<sub>t</sub>O<sub>3</sub>, reduction and reoxidation properties, 119, 271

LaCo<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-6</sub>, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, **118**, 117

 $La_2CoIrO_6$ , structure and magnetic properties, 116, 199  $LaCoO_3$ 

magnetic and transport properties, 116, 224

oxygen ion migration, 118, 125

 $\text{La}_{1-x}\text{Sr}_x\text{CoO}_{3-\delta}$  (0 <  $x \le 0.50$ ), 118, 323

 $La_{0.2}Sr_{0.8}Cu_{0.4}Co_{0.6}O_{3-y}$ , synthesis, 119, 260

LiCoO2, synthesis and thermal stability, 117, 1

NaCa<sub>2</sub>Co<sub>2</sub><sup>2+</sup> (AsO<sub>4</sub>)<sub>3</sub>, structure, 118, 267

NaCo<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(OH), polarized electronic absorption spectra and crystal structure, 115, 360

NiCo<sub>2</sub>O<sub>4</sub>, preparation by sol-gel process, **116**, 157

PbCo<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>, crystal structure, 118, 202

SmCo<sub>5</sub>, and Sm<sub>2</sub>Co<sub>17</sub>, and Sm<sub>2</sub>Co<sub>7</sub>, binary magnetic phases competing for stability, leapfrog thermodynamics, **116**, 92

 $Sn_{1-x}Co_xO_y$  (0 <  $x \le 0.15$ ), thin films, structural models, 116, 256  $SrCoO_{3-\delta}$ , electronic states, effects of oxygen, 119, 76

 $Ln_{1-x}Sr_xCoO_{3-\delta}(Ln = La,Pr,Nd)$  solid solutions, oxide ion conduction, **120**, 128

 $Sr_3Co_2O_{7-y}$  (0.94  $\leq y \leq$  1.22), structure and oxygen stoichiometry, 115, 499

 $U_3Co_4Ge_7$ , crystal structure and magnetic properties, 115, 247  $YBaCoCu_{1-x}Fe_xO_5$ , magnetic behavior, 115, 514

Y<sub>2</sub>Ba<sub>3</sub>Cu<sub>3</sub>Co<sub>2</sub>O<sub>12</sub>, synthesis by solid state reaction, **115**, 407 Combustion

high-temperature,  $Ba-\beta$ - $Al_2O_3$ , materials, crystal structure, **114**, 326 Computer applications

# **POWSIM**

in crystal structure determination of 2(C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub>) · Mo<sub>3</sub>O<sub>10</sub> · 4H<sub>2</sub>O from powder data, 117, 103

direct method powder diffraction package, in analysis of  $K_2Mo_2$  $O_{10} \cdot 3H_2O$ , 115, 225

# Conductivity

Ag4Hf3S8, 115, 112

ionic, see Ionic conductivity

#### Copper

 $Ba_{2-x}Bi_xCu_2O_5$  (0  $\le x \le 1.5$ ), synthesis and characterization, **114**, 585 BaCuAs<sub>2</sub>O<sub>7</sub>, synthesis and structure, **118**, 280

BaCuO<sub>2+x</sub>, structural, magnetic, and EPR studies, 119, 50

 $RBa_2Cu_3O_{7-y}$  (R = Ln or Y), FT-IR skeletal study, 119, 36

 $Ln_2Ba_2CuPtO_8$  (Ln = Ho-Lu), synthesis and characterization, 120, 316  $BaCu_2S_2$ , electrical and magnetic properties, 117, 73

α-BaCu<sub>4</sub>S<sub>3</sub>, electrical and magnetic properties, 117, 73

 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln=La-Tb), synthesis, structure, and superconductivity, **119**, 224

Ba<sub>4</sub>LiCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, 119, 359

Ba<sub>4</sub>NaCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, 119, 359

 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$ , phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120

BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, chemical diffusion and synthesis kinetics, 116, 314

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120

 $Bi_{16}Sr_{28}Cu_{17}O_{69+\delta}$ , synthesis and characterization, 119, 169

CaCu<sub>0.15</sub>Ga<sub>3.85</sub>, crystal structure, analysis by powder X-ray diffraction data, 114, 342

CaCuO<sub>2</sub>-SrCuO<sub>2</sub> infinite-layer thin film heterostructures, growth monitored by RHEED, 114, 190

Ln<sub>2-x</sub>Ce<sub>x</sub>CuO<sub>4</sub>, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491

[n-C<sub>9</sub>H<sub>19</sub>NH<sub>3</sub>]<sub>2</sub>CuCl<sub>4</sub>, characterization by FTIR, 117, 97

 $Co_x Cu_{1-x} Fe_2 O_4$  ( $0 \le x < 0.3$ ), thermal behavior and magnetic properties, *erratum*, **117**, 64; **117**, 433

-Cr-Al spinel oxide semiconductors, compensated, analysis, **120**, 388 Cu, disorder in CuCrP<sub>2</sub>S<sub>6</sub>, **116**, 208

Cu(II), incorporation into  $\alpha$ - and  $\beta$ -AlF<sub>3</sub> · 3H<sub>2</sub>O, analysis by ESR, 116, 249

ACuAs<sub>2</sub> (A = Y,La-Nd,Sm,Gd-Lu), with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

Cu(C<sub>4</sub>H<sub>5</sub>N<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, synthesis and characterization, 117, 333

 $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$ , synthesis and structure determination with silica gels, 117, 256

CuCl<sub>2</sub> · 2H<sub>2</sub>O, stepwise reaction with 2,2'-bipyridyl in solid state, 119, 299

CuCrP<sub>2</sub>S<sub>6</sub>, copper disorder, stacking distortions, and magnetic ordering, 116, 208

CuCr<sub>2</sub>S<sub>4</sub>, spinel formation, thermal decomposition reactions in crystalline mixtures, 117, 122

 $Me^{+}X-CuX_{2}-H_{2}O$  ( $Me^{+}=K^{+},NH_{4}^{+}Rb^{+},Cs^{+};$   $X^{-}=Cl^{-},Br^{-}),$  double salts, 114, 385

CuNb<sub>2</sub>O<sub>6</sub>, lithium insertion characteristics, 118, 193

CuNd<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>, crystal structure, growth, and magnetic and spectroscopic properties, 120, 254

R<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub> (R = Yb,Tm,Er,Y,Ho), structural characterization by neutron diffraction, 115, 324

 $Cu_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{3+} = Cr)$ , characterization, 119, 246  $Cu_2(OH)_3NO_3$ , magnetic behavior and exchange coupling, single crystal study, 116, 1

Cu<sub>0.5</sub>(OH)<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 117, 157

CuS, Cu<sub>1.8</sub>S, Cu<sub>1.8</sub>S, and Cu<sub>2</sub>S films, optical and electrical properties, 114, 469

 $ACu_7S_4$  (A = TI,K,Rb), physical properties and successive phase transitions. 115, 379

CuSb<sub>2</sub>O<sub>6</sub>, long-range magnetic order, confirmation, 118, 199

CuS-Cr<sub>2</sub>S<sub>3</sub>, copper-chromium sulfide spinel and thermal decomposition reactions in, 117, 122

CuSr(HCOO)<sub>4</sub>, crystal structure and thermal decomposition, 117, 145

 $CuS_{1-x}Se_x$  ( $0 \le x \le 1$ ), phase transition, determination by X-ray diffractometry, 118, 176

Cu<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 117, 157

Cu-Zn coprecipitate, effect of incorporation of Al<sup>+3</sup> on structure, 115, 204

Cu<sub>x</sub>Zn<sub>1-x</sub>Nb<sub>2</sub>O<sub>6</sub>, structural relations, **115**, 476

Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80

Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub> intergrowth between 123 and 0201 structures, 115, 1 HfCuSi<sub>2</sub>, ternary arsenides and antimonides with related structure, preparation, 115, 305

 $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$ , synthesis and crystal structure, **114**, 230  $HgBiSr_7Cu_2SbO_{15}$ , double cationic ordering, **116**, 53

 $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}La_rCuO_{4+\delta}$ , synthesis and characterization, **116**, 347  $Hg_{2-x}Cu_xBa_2Pr_2Cu_2O_{10-\delta}$  (M = Cu,Pr), synthesis and crystal structure, **114**, 230

(Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, 114, 369

 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$ , synthesis and characterization, 115, 525

 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$ , modulated superconducting oxides, structural aspects, 120, 332

HoSr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.54</sub>, synthesis and crystal structure, 119, 115

La<sub>4</sub>BaCu<sub>5</sub>O<sub>121</sub>, insulating, prepared by reduction of metallic La<sub>4</sub>Ba Cu<sub>5</sub>O<sub>131</sub>, analysis, 114, 95

 $La_2Ba_2Cu_2Sn_2O_{11}$ , high-temperature transport and defect studies, 119, 80

 $La_2Ba_2Cu_2Ti_2O_{11}$ , high-temperature transport and defect studies, 119, 80

La<sub>5</sub>Cu<sub>5</sub>O<sub>13.35</sub>, crystal structure, determination by high-resolution synchrotron X-ray diffraction, **118**, 170

La<sub>2</sub>CuO<sub>4</sub>-Nd<sub>2</sub>CuO<sub>4</sub>, superconductivity, after treatment under oxidizing conditions, 115, 540

 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-y}$  (M = Co,Fe), synthesis, 119, 260

La<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>3</sub>, perovskite lattice, mixed valence Cu(III)/Cu(IV) in, stabilization under high oxygen pressure, **114**, 88

La<sub>6.4</sub>Sr<sub>1.6</sub>Cu<sub>8</sub>O<sub>20</sub>, ordered substitution of iron for copper, 115, 469

 $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta}$ , oxygen content and structure relationship, 115, 490

 $La_{1.2}Tb_{0.8}CuO_{4+\delta}$ , with  $T^*$  structure, conducting properties and structure, 115, 332

 $LiCuO_2$ , symmetry, analysis by X-ray and neutron diffraction measurements, 114, 590

 $\alpha$ - and  $\beta$ -Na<sub>2</sub>CuP<sub>2</sub>O<sub>7</sub>, crystal structure, 120, 23

Na<sub>2</sub>Cu<sub>2</sub>ZrS<sub>4</sub>, synthesis and crystal structure, 117, 30

Na<sub>4</sub>H[Cu(H<sub>2</sub>TeO<sub>6</sub>)<sub>2</sub>] · 17H<sub>2</sub>O, crystal structure, electronic spectra, and XPS, 115, 208

Na<sub>4</sub>K[Cu(HIO<sub>6</sub>)<sub>2</sub>] · 12H<sub>2</sub>O, crystal structure, electronic spectra, and XPS, 115, 208

 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$ , 120, 146

Nd<sub>2-x</sub>Ce<sub>x</sub>CuO<sub>4</sub>, FT-IR skeletal study, 119, 36

Nd<sub>2</sub>CuO<sub>4</sub>-Nd<sub>2</sub>CuO<sub>4</sub>, superconductivity, after treatment under oxidizing conditions, 115, 540

Nd<sub>2</sub>O<sub>3</sub>-Pr<sub>6</sub>O<sub>11</sub>-CuO, phase relations, 115, 291

MOCuSe (M = Bi,Gd,Dy), powder X-ray and IR studies, 118, 74

Pb<sub>2</sub>Cu(II)<sub>7</sub>(AsO<sub>4</sub>)<sub>6</sub>, crystal structure, topological relationship to Pb<sub>2</sub>Cu(I)<sub>2</sub>Cu(II)<sub>6</sub>(AsO<sub>4</sub>)<sub>6</sub>, 114, 413

Pb<sub>2</sub>Cu(I)<sub>2</sub>Cu(II)<sub>6</sub>(AsO<sub>4</sub>)<sub>6</sub>, crystal structure, topological relationship to Pb<sub>2</sub>Cu(II)<sub>7</sub>(AsO<sub>4</sub>)<sub>6</sub>, **114**, 413

Pr<sub>2-y</sub>Sr<sub>y</sub>CuO<sub>4-8</sub>, effect of oxygen and strontium content, 116, 385 RbTaCu<sub>2</sub>Te<sub>4</sub>, synthesis and characterization, 117, 247

 $Sm_{1-x}SrSr_xCuO_{2.5-x/2+\delta}$ , PLD thin films, perovskite phases and phasoids, 116, 37

Sm<sub>2</sub>Sr<sub>6</sub>Cu<sub>8</sub>O<sub>17+8</sub> perovskite films, analysis by HREM, 116, 300

Sr<sub>3</sub>CuIrO<sub>6</sub>, structure and magnetic properties, 117, 300

SrCuO<sub>2</sub> orthorhombic crystals, growth and structural refinement, 114, 289

SrCuO<sub>2</sub>-CaCuO<sub>2</sub> infinite-layer thin film heterostructures, growth monitored by RHEED, 114, 190

TaCu<sub>3</sub>Te<sub>4</sub>, synthesis and characterization, 117, 247

Tb<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, synthesis and crystal structure, **117**, 213

Ti<sub>2</sub>(Ba<sub>2</sub>Gd)Gd<sub>2-x</sub>Ce<sub>x</sub>Cu<sub>2</sub>O<sub>13</sub>, design and synthesis, 114, 57

whisker growth from inside YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> sulfur-doped pellets, 117, 151

YBaCoCu<sub>1-x</sub>Fe<sub>x</sub>O<sub>5</sub>, magnetic behavior, 115, 514

Y2Ba3Cu3Co2O12, synthesis by solid state reaction, 115, 407

YBaCuFeO<sub>5</sub>, crystal and magnetic structure, 114, 24

Y<sub>2</sub>BaCuO<sub>5</sub>-YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>, quantitative X-ray phase analysis and EPR spectra, 116, 136

YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> films, perovskites as substrates for, synthesis and characterization, **116**, 193

YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>, sulfur-doped pellets, copper whisker growth from inside, 117, 151

Y<sub>2</sub>BaCuO<sub>5</sub>, quantitative X-ray phase analysis and EPR spectra, 116,

YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>, oxygen nonstoichiometry in, vapor pressure scanning, 119, 62

 $YCuO_2$  and  $Y_2Cu_2O_5$  phases in  $Y_2O_3$ -Cu-CuO system, analysis by oxygen coulometry, 114, 420

 $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$ , retarded Pr f hybridization and  $T_c$  suppression, 118, 215

(Zn<sub>x</sub>Cu<sub>1-x</sub>)(OH)<sub>2-y</sub>(NO<sub>3</sub>)<sub>y</sub>·zH<sub>2</sub>O, cation distribution and coordination chemistry, structural and spectroscopic study, **118**, 303

Coupling

exchange,  $Cu_2(OH)_3NO_3$ , measurements as function of magnitude and orientation of magnetic field, 116, 1

Covalenc

 $RAO_4$  and LiAO<sub>3</sub> (R = rare earth elements; A = Nb,Ta), relationship with displacive phase transition temperature, 116, 28

Crown ethers

[Cs<sup>+</sup>(15-crown-5)(18-crown-6)e<sup>-</sup>]<sub>6</sub> · (18-crown-6), properties, **117**, 309 Crystal chemistry

≈SbVO<sub>4</sub>, 116, 369

TiS, VS, TiSe, and VSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346

Crystal field

effect on rare-earth (Pr,Nd,Eu) mixed oxide, magnetic susceptibility, 114, 52

Crystal field potentials

multipole expansions,  $ReB_q^k$ -Im $B_q^k$ , parameter ratio quality, 115, 92 Crystal growth

CuNd<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>, 120, 254

Crystals

mixed, see Mixed crystals

Crystal structure, see also Tunnel structure

Ag<sub>4</sub>Hf<sub>3</sub>S<sub>8</sub>, 115, 112

Ag<sub>2</sub>MnGeTe<sub>4</sub>, symmetry, 115, 192

 $AgMn_3(PO_4)(HPO_4)_2$ , 117, 206

 $REAgSb_2$  (RE = Y,La-Nd,Sm,Gd-Tm), 115, 441

Ag<sub>3.8</sub>Sn<sub>3</sub>S<sub>8</sub>, 116, 409

 $AgV_2(PO_4)P_2O_7$ , 115, 521

Ag<sub>4</sub>Zr<sub>3</sub>S<sub>8</sub>, 116, 409

 $Al_{28}O_{21}C_6N_6$ , diamond-related compound in system  $Al_2O_3-Al_4C_3-AlN$ , identification, **120**, 211

 $Al_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , **120**, 197

 $AAs_2O_6$  (A = Mn,Co,Ni), 118, 402

 $M_2$ As<sub>2</sub>O<sub>7</sub> (M = Ni,Co,Mn), 115, 229

AuNi<sub>2</sub>Sn<sub>4</sub>, 119, 142

 $MAu_2O_4$  (M = Sr,Ba), 118, 247

Ba-β-Al<sub>2</sub>O<sub>3</sub>, 114, 326

| $Ba_{2-x}Bi_xCu_2O_5$ (0 $\le x \le 1.5$ ), <b>114,</b> 585                                                                | Ca <sub>3</sub> ZrSi <sub>2</sub> O <sub>9</sub> , 115, 464                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| BaBiO <sub>3-<math>\delta</math></sub> system (0 $\leq \delta \leq$ 0.5), 117, 55                                          | CdCr <sub>2</sub> Se <sub>4</sub> , 118, 43                                                                                                     |
| BaCoO <sub>3-y</sub> , <b>120,</b> 327                                                                                     | $Cd_{2-x}GeO_{4-x-3y}N_{2y}$ , 119, 304                                                                                                         |
| $Ba_3Cr_2MO_9$ ( $M = Mo,W$ ), <b>120</b> , 238                                                                            | $CeO_{2-\delta}YO_{21.5}$ , 115, 23                                                                                                             |
| $BaCuAs_2O_7$ , 118, 280                                                                                                   | $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$ , 117, 103                                                                                         |
| $Ln_2Ba_2CuPtO_8$ ( $Ln = Ho-Lu$ ), 120, 316                                                                               | $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O, 120, 231$                                                                           |
| BaEu(CO <sub>3</sub> ) <sub>2</sub> , <b>116</b> , 286                                                                     | $Co_xCd_{1-x}In_2S_4$ , <b>114</b> , 524                                                                                                        |
| $Ba_2M_2F_7Cl\ (M = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}), 115, 98$                                                 | CoCr <sub>2</sub> S <sub>4</sub> , 118, 43                                                                                                      |
| $Ba_2MM'F_7Cl\ (M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+}),\ 115,\ 98$                                                | $Ln_2MCo_2O_7$ ( $Ln = Sm,Gd; M = Sr,Ba$ ), 114, 286                                                                                            |
| $BaFe_{12-2x}Co_xTi_xO_{19}$ , <b>114,</b> 534                                                                             | $\beta$ -Co(OH) <sub>2</sub> , 114, 550                                                                                                         |
| BaFe <sub>12-2x</sub> Ir <sub>x</sub> $Me_xO_{19}$ ( $Me = Co, Zn; x \sim 0.85 \text{ and } x \sim 0.50$ ), <b>120,</b> 17 | Co <sub>2</sub> (OH)PO <sub>4</sub> , <b>114,</b> 151                                                                                           |
| Ba <sub>2</sub> Fe <sub>2</sub> Ti <sub>4</sub> O <sub>13</sub> , <b>120</b> , 121                                         | CoSeO <sub>3</sub> -II, <b>120</b> , 182                                                                                                        |
| BaHgRuO <sub>5</sub> , <b>120</b> , 223                                                                                    | Cr <sub>2</sub> Sn <sub>3</sub> Se <sub>7</sub> , <b>115</b> , 165                                                                              |
| $BaMo_4O_{13} \cdot 2H_2O$ , 116, 95                                                                                       | Cs <sub>2</sub> [AuCl <sub>2</sub> ][AuCl <sub>4</sub> ], local electronic anisotropy, probing with anoma-                                      |
| $BaMo(PO_4)_2$ , 116, 364                                                                                                  | lous scattering diffraction, 118, 383                                                                                                           |
| BaNb <sub>0.8</sub> S <sub>3-<math>\delta</math></sub> , 115, 427                                                          | $Cs_3LnCl_6 \cdot 3H_2O \ (Ln = La-Nd), 116, 329$                                                                                               |
| BaNbS <sub>3</sub> , 115, 427                                                                                              | CsErTa <sub>6</sub> Br <sub>18</sub> , <b>118</b> , 274                                                                                         |
| $[Ba_2(OH)_2(H_2O)_{10}][Se_4], 120, 12$                                                                                   | CsGeBr <sub>3</sub> , <b>118</b> , 20                                                                                                           |
| $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ (R = Gd-Lu,Y,Sc), 118, 180                                                     | $CsMo_2O_3(PO_4)_2$ , 116, 87                                                                                                                   |
| $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$ (NH) <sub>4</sub> FeF <sub>6</sub> structure type, 115,     | CsNbOB <sub>2</sub> O <sub>5</sub> , <b>120</b> , 74                                                                                            |
| 197                                                                                                                        | $CsTaOB_2O_5$ , <b>120</b> , 74                                                                                                                 |
| BaTa <sub>2</sub> S <sub>5</sub> , 116, 392                                                                                | Cs(TiAs)O <sub>5</sub> , 120, 299                                                                                                               |
| Ba <sub>8</sub> Ta <sub>4</sub> Ti <sub>3</sub> O <sub>24</sub> , <b>114</b> , 560                                         | $Cs(TiP)O_5$ , <b>120</b> , 299                                                                                                                 |
| $Ba_{10}Ta_{7.04}Ti_{1.2}O_{30}$ , <b>114</b> , 560                                                                        | $\alpha$ - and $\beta$ -CsTi <sub>3</sub> P <sub>5</sub> O <sub>19</sub> , <b>115</b> , 120                                                     |
| BaTe <sub>2</sub> , 117, 247                                                                                               | $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$ , 117, 256                                                                                             |
| BaV <sub>3</sub> O <sub>8</sub> , 117, 407                                                                                 | CuNb <sub>2</sub> O <sub>6</sub> with inserted Li, 118, 193                                                                                     |
| $Ba_xV_8O_{16} (x = 1.09(1)), 115, 88$                                                                                     | $CuNd_2Ge_2O_8$ , <b>120</b> , 254                                                                                                              |
| $BaVO(PO_4)(H_2PO_4) \cdot H_2O, 118, 241$                                                                                 | $R_2Cu_2O_5$ (R = Yb,Tm,Er,Y,Ho), 115, 324                                                                                                      |
| $Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O, 116, 77$                                                                      | Cu <sub>2</sub> (OH) <sub>3</sub> NO <sub>3</sub> , <b>116</b> , 1                                                                              |
| Ba(VO) <sub>2</sub> (SeO <sub>3</sub> ) <sub>2</sub> (HSeO <sub>3</sub> ) <sub>2</sub> , 116, 77                           | $Cu_{0.5}(OH)_{0.5}[VOPO_4] \cdot 2H_2O, 117, 157$                                                                                              |
| $Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O$ , <b>114</b> , 359                                                                  | CuSr(HCOO) <sub>4</sub> , 117, 145                                                                                                              |
| BaY <sub>2</sub> S <sub>4</sub> , 117, 363                                                                                 | $Cu_{0.5}[VOPO_4] \cdot 2H_2O, 117, 157$                                                                                                        |
| Ba <sub>2</sub> ZnN <sub>2</sub> , <b>119</b> , 375                                                                        | $Cu_x Zn_{1-x}Nb_2O_6$ , 115, 476                                                                                                               |
| $Bi_{13}Ba_2Fe_{13}O_{66}$ , from 2201–0201 intergrowth $Bi_2Sr_4Fe_2O_{10}$ , 118, 357                                    | Eu <sub>3</sub> Ba <sub>2</sub> Mn <sub>2</sub> Cu <sub>2</sub> O <sub>12</sub> , <b>115</b> , 1                                                |
| BiCaRu <sub>2</sub> O <sub>7-y</sub> , <b>119</b> , 254                                                                    | EuNiO <sub>3</sub> , <b>120</b> , 170                                                                                                           |
| $Bi_2Fe_{4-x}Al_xO_9$ , <b>114</b> , 199                                                                                   | $Fe_{1-x}O$ , 117, 398                                                                                                                          |
| BiLa <sub>2</sub> O <sub>4.5</sub> , <b>116</b> , 72                                                                       | $Ga_2O_3(ZnO)_m$ ( $m = 7,8,9,16$ ), in $In_2O_3-ZnGa_2O_4-ZnO$ system, 116,                                                                    |
| $Bi_3RE_5O_{12}$ ( $RE = Y,La,Pr-Lu$ ), related phases, 116, 68                                                            | 170                                                                                                                                             |
| Bi <sub>3</sub> NF <sub>6</sub> , <b>114</b> , 73<br>Bi <sub>2</sub> O <sub>3</sub> , <b>118</b> , 66                      | GdRuC <sub>2</sub> , with filled NiAs structure, 118, 158                                                                                       |
| Bi <sub>2</sub> O <sub>4</sub> , <b>116</b> , 281                                                                          | (Gd <sub>e</sub> Sn <sub>1-e</sub> S) <sub>1.16</sub> (NbS <sub>2</sub> ) <sub>3</sub> , <b>114, 4</b> 35<br>HfO <sub>2</sub> , <b>119,</b> 289 |
| $Bi_2O_3-Ln_2O_3$ ( $Ln = Sm,Eu,Gd,Tb,Dy$ ), <b>120,</b> 32                                                                | $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$ ( $M = Cu,Pr$ ), 114, 230                                                                                |
| $Bi_2O_3-En_2O_3$ (En = Sin, Eu, Od, 10, Dy), 120, 52<br>$Bi_2O_3-SrO$ , 118, 66                                           | $HgBiSr_2Cu_2SbO_{15}$ , double cationic ordering. <b>116</b> , 53                                                                              |
| (BiS) <sub>1,11</sub> NbS <sub>2</sub> , <b>116</b> , 61                                                                   | HgCr <sub>2</sub> Se <sub>4</sub> , <b>118</b> , 43                                                                                             |
| Bi <sub>16</sub> Sr <sub>28</sub> Cu <sub>17</sub> O <sub>69+δ</sub> , <b>119</b> , 169                                    | $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$ ( $M = Pr,Pb,Bi,Ti$ ), 115, 525                                                                    |
| BiTe $X$ ( $X = \text{Cl,Br,I}$ ), 114, 379                                                                                | $HoSr_2Cu_2 _7Mo_{0.3}O_{7.54}$ , <b>119</b> , 115                                                                                              |
| $Bi_2TeO_5-Bi_2Te_2O_7$ , phase region, <b>116</b> , 240                                                                   | InCdBr <sub>3</sub> , 116, 45                                                                                                                   |
| Bi <sub>4</sub> Te <sub>2</sub> O <sub>9</sub> Br <sub>2</sub> , <b>116</b> , 406                                          | InGaO <sub>3</sub> (ZnO) <sub>3</sub> , in In <sub>2</sub> O <sub>3</sub> -ZnGa <sub>2</sub> O <sub>4</sub> -ZnO system, 116, 170               |
| Bi <sub>2</sub> Ti <sub>4</sub> O <sub>11</sub> , <b>119</b> , 281                                                         | InMnO <sub>3</sub> , <b>116</b> , 118                                                                                                           |
| Ca <sub>4</sub> Al <sub>6</sub> O <sub>16</sub> S, <b>119</b> , 1                                                          | $In_2O_3(ZnO)_m$ ( $m = 3,4,5$ ), in $In_2O_3-ZnGa_2O_4-ZnO$ system, 116, 170                                                                   |
| Ca <sub>3</sub> CoN <sub>3</sub> , <b>119</b> , 161                                                                        | InPO <sub>4</sub> -1, 117, 373                                                                                                                  |
| CaCu <sub>0.15</sub> Ga <sub>3.85</sub> , <b>114,</b> 342                                                                  | InVO <sub>4</sub> -I, <b>118</b> , 93                                                                                                           |
| CaFe $Ti_2O_6$ at high pressure, 114, 277                                                                                  | in iron-substituted γ-nickel oxyhydroxides, 114, 6                                                                                              |
| Ca <sub>3</sub> HfSi <sub>2</sub> O <sub>9</sub> , <b>115</b> , 464                                                        | K <sub>2</sub> Ag <sub>2</sub> SnTe <sub>4</sub> , 117, 247                                                                                     |
| $Ca_{10}(PO_4)_6(OH)_2$ , <b>116</b> , 265                                                                                 | KAlSiO <sub>4</sub> polymorphs on SiO <sub>2</sub> -KAlO <sub>2</sub> , 115, 214                                                                |
| γ-CaSO <sub>4</sub> , 117, 165                                                                                             | $K_2 x Ba_{2-x} Sb_4 O_9 (PO_4)_2 (0 < x < 0.4), 114, 399$                                                                                      |
| $CaSO_4 \cdot 0.5H_2O$ , 117, 165                                                                                          | K <sub>2</sub> BaSnTe <sub>4</sub> , <b>117</b> , 247                                                                                           |
| $CaSO_4 \cdot 0.6H_2O$ , 117, 165                                                                                          | $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$ , <b>116</b> , 290                                                                                   |
| $Ca_{1-x}Sr_xNiN$ (0 $\leq x \leq 0.5$ ) solid solutions, 115, 353                                                         | KH <sub>2</sub> PO <sub>4</sub> , <b>114,</b> 219                                                                                               |
| $Ca_nTl_2O_{n+3}$ series, chemical twinning of $Ca_2Tl_2O_5$ and $CaTl_2O_4$ , 114,                                        | $K_x IrO_2$ , 118, 372                                                                                                                          |
| 428                                                                                                                        | KMgLa(PO <sub>4</sub> ) <sub>2</sub> doped with Eu, 114, 282                                                                                    |
| $Ca_3Tl_2O_6$ , 115, 508                                                                                                   | KMo(H <sub>2</sub> O)O <sub>2</sub> PO <sub>4</sub> , <b>118</b> , 153                                                                          |
| $Ca_3Tl_4O_9$ , 119, 134                                                                                                   | KMo <sub>4</sub> O <sub>6</sub> tetragonal form, <b>117</b> , 217                                                                               |
| CaY <sub>2</sub> S <sub>4</sub> , 117, 363                                                                                 | $K_2Mo_2O_{10} \cdot 3H_2O$ , 115, 225                                                                                                          |
| Ca <sub>5</sub> Y <sub>4</sub> S <sub>11</sub> , NaCl-type Rietveld refinement, 119, 45                                    | KNB <sub>5</sub> GeO <sub>16</sub> · 2H <sub>2</sub> O, <b>115</b> , 373                                                                        |
|                                                                                                                            |                                                                                                                                                 |

KNiPS4, addendum, 116, 107; 117, 432  $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$ , 119, 176 La<sub>4</sub>BaCu<sub>5</sub>O<sub>12</sub>, 114, 95 NbN<sub>x</sub>, 117, 294  $Nb_{2-x}P_{3-y}O_{12}$ , **116,** 335 La<sub>1-x</sub>Ca<sub>x</sub>CrO<sub>3-δ</sub>, 115, 152 LaCo<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-5</sub>, doped with Sr, 118, 117 Nb<sub>3</sub>SBr<sub>7</sub>, 120, 311 La<sub>5</sub>Cu<sub>5</sub>O<sub>13.35</sub>, 118, 170 NdMnO<sub>3+y</sub>, 118, 53 LaMnO<sub>3+8</sub>, 114, 516  $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O_1$ , 114, 42 LaMnO<sub>3</sub>, at room temperature and at 1273 K under N<sub>2</sub>, 119, 191 NH<sub>4</sub>Mo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, 118, 153 La<sub>3</sub>NbO<sub>7</sub>, 116, 103  $(NH_4)_2Mo_3O_{10} \cdot H_2O$ , 116, 422 NH<sub>4</sub>Sn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, 119, 197  $(La_{1-x}Nd_x)CrO_3$   $(0 \le x \le 1.0)$ , relationship with electrical properities,  $(Ni_{1-x}Mg_x)_6MnO_8$ , 118, 112 La<sub>2</sub>O<sub>3</sub>, monoclinic, identity with La<sub>9,33</sub>(SiO<sub>4</sub>)<sub>6</sub>, 120, 38  $Ln_4Ni_3O_{10-}\delta$  (Ln = La,Pr,Nd), 117, 236 La<sub>2</sub>O<sub>2</sub>CN<sub>2</sub>, 114, 592 Ni<sub>1,282(4)</sub>Si<sub>1,284(5)</sub>P<sub>3</sub>, 114, 476 LaPd<sub>2</sub>O<sub>4</sub>, 114, 206 NiSi<sub>2</sub>P<sub>3</sub>, 114, 476  $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-y}$  (M = Co,Fe) cubic perovskites, 119, 260 MOCuSe (M = Bi,Gd,Dy), 118,74La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub>, 120, 175 ordering in BaBiO<sub>2</sub>Cl, 117, 201 La<sub>4</sub>Ti<sub>3</sub>S<sub>4</sub>O<sub>8</sub>, 114, 406 PbCo<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>, 118, 202 La<sub>6</sub>Ti<sub>2</sub>S<sub>8</sub>O<sub>5</sub>, rare-earth/transition-metal oxysulfides, 114, 406 Pb<sub>2</sub>Cu(II)<sub>7</sub>(AsO<sub>4</sub>)<sub>6</sub>, 114, 413 Pb<sub>2</sub>Cu(I)<sub>2</sub>Cu(II)<sub>6</sub>(AsO<sub>4</sub>)<sub>6</sub>, 114, 413 La<sub>20</sub>Ti<sub>11</sub>S<sub>44</sub>O<sub>6</sub>, 120, 164 Li<sub>2</sub>Ca<sub>2</sub>Si<sub>5</sub>O<sub>13</sub>, **114**, 512  $PbFe_3(P_2O_7)_2$ , 118, 202 LiCoO<sub>2</sub>, **117**, 1  $Pb_{1-x}In_xTe (x = 0.56), 116, 33$  $Li_{1-x}H_xIO_3$ , 115, 309 Pb<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, 116, 179  $Li(H_2O)_4B(OH)_4 \cdot 2H_2O$ , 115, 549  $Pb_{2-x}Ln_xRu_2O_{7-y}$  (Ln = Nd,Gd), 114, 15 Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub>, Rietveld refinement, 115, 420 P<sub>4</sub>ON<sub>6</sub>, 115, 265 LiMoOP<sub>2</sub>O<sub>7</sub>, 120, 260  $PrMnO_{3+v}$ , 118, 53 Li<sub>2.88</sub>PO<sub>3.73</sub>N<sub>0.14</sub>, **115**, 313 PrMnOGeO<sub>4</sub>, 120, 7 Li<sub>0.8</sub>VO<sub>2</sub>, 114, 184 Pr<sub>2</sub>O<sub>3</sub>, monoclinic, identity with monoclinic Pr<sub>9,33</sub>(SiO<sub>4</sub>)<sub>6</sub>O<sub>2</sub>, 120, 38  $\delta_1$ -LiZnPO<sub>4</sub>, 117, 39 Pr<sub>9</sub>O<sub>16</sub>, 118, 133 LiZnPO<sub>4</sub>, 114, 249 Pr<sub>10</sub>O<sub>18</sub>, 118, 141 Li<sub>3</sub>Zr<sub>4</sub>F<sub>19</sub>, 120, 187 Pr<sub>4</sub>V<sub>5</sub>Si<sub>4</sub>O<sub>22</sub>, 116, 211 RbTaCu<sub>2</sub>Te<sub>4</sub>, 117, 247 Li<sub>4</sub>ZrF<sub>8</sub>, 120, 187 Lu<sub>3</sub>O<sub>2</sub>F<sub>5</sub>, 119, 125  $M(ReO_4)_2 \cdot 4H_2O \ (M = Co, Zn), 115, 255$ (Mg,Na,Al)<sub>2</sub>(Al,Zn)<sub>3</sub>, 115, 270 rod packings, mathematical analysis, 114, 36 Mn<sub>3</sub>Al<sub>2-r</sub>Cr<sub>r</sub>Ge<sub>3</sub>O<sub>12</sub>, 118, 261 Ru<sub>2</sub>P<sub>6</sub>O<sub>18</sub>, **119**, 107 Mn<sub>4</sub>As<sub>3</sub>, 119, 344  $Ru(PO_3)_3 \cdot Ru_2P_6O_{18}$ , 119, 107 Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>Br, 120, 60  $M_{1/2}Sb_{2/3}^{V}(PO_4)_3$  (M = Y,In,Sc), 118, 104 Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>I, 120, 60 Sb<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, 118, 104  $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$  (0  $\leq \delta \leq 1$ ), 117, 48 ScCrC<sub>2</sub>, 119, 324 Mn<sub>2</sub>OBO<sub>3</sub>, 114, 311  $Si_{1-x}C_x$ : H alloys, 117, 427  $Mn_2VO(PO_4)_2 \cdot H_2O$ , 115, 76 Sm<sub>2</sub>Sr<sub>6</sub>Cu<sub>8</sub>O<sub>17+8</sub> films, 116, 300  $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$  (x = 0.53,1.00), 118, 28  $Sn_{1-x}Co_xO_y$  (0 <  $x \le 0.15$ ), 116, 256  $Sn_{1-p}Cr_2S_{4-p}$ , 115, 7 Mo-Bi-O system, letter to editor, 119, 428  $M_2\text{MoO}_4$  ( $M = \text{Na,NH}_4$ , Ag), 117, 323 SnS<sub>2</sub>, 117, 219 Mo<sub>7.6</sub>W<sub>1.4</sub>O<sub>25</sub>, 119, 8  $Sn_4S_9[(C_3H_7)_4N]_2$ , 114, 506  $\alpha$ -Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, 118, 33  $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH], 114, 506$ NaAlO<sub>2</sub> · 5/4H<sub>2</sub>O, and dehydration product, 115, 126 SnSe<sub>2</sub>, 117, 219 Na<sub>4</sub>Al(PO<sub>4</sub>)<sub>2</sub>(OH), 118, 412  $Sr_3Co_2O_{7-y}$  (0.94  $\leq y \leq 1.22$ ), **115,** 499 Na<sub>2</sub>BeGeO<sub>4</sub>, 118, 62 SrCuO<sub>2</sub>, 114, 289  $NaCa_2M_2^{2+}$  (AsO<sub>4</sub>)<sub>3</sub> ( $M^{2+}$  = Mg,Ni,Co), 118, 267  $(Sr[Fe(CN)_5NO] \cdot 4H_2O)$ , 120, 1 NaClO<sub>3</sub>, high-pressure behavior, 118, 378  $Sr_3MIrO_6$  (M = Ni,Cu,Zn), 117, 300 NaCo<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(OH), 115, 360 Sr<sub>3</sub>La<sub>2</sub>Ti<sub>2</sub>O<sub>10</sub>, 119, 412  $\alpha$ - and  $\beta$ -Na<sub>2</sub>CuP<sub>2</sub>O<sub>7</sub>, 120, 23 Sr<sub>5</sub>Mn<sub>4</sub>CO<sub>3</sub>O<sub>10</sub>, 120, 279 Na<sub>2</sub>Cu<sub>2</sub>ZrS<sub>4</sub>, 117, 30 SrNb<sub>4</sub>O<sub>6</sub>, 114, 301 Na<sub>7</sub>Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub>, 118, 33 SrNiN. 115, 353  $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$ , 115, 208 Sr(OD)<sub>2</sub>, 119, 157  $Na_4K[Cu(HIO_6)_2] \cdot 12H_2O$ , 115, 208 Sr<sub>2</sub>RhO<sub>4</sub>, 118, 206  $Na_3La_2(CO_3)_4F:Eu^{3+}$ , 116, 286 Sr<sub>3</sub>V<sub>2</sub>O<sub>6.99</sub>, 118, 292 NaMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, 115, 240 SrY<sub>2</sub>S<sub>4</sub>, 117, 363 Na<sub>3</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub>, **114**, 543 Sr<sub>2</sub>ZnN<sub>2</sub>, 119, 375 Na<sub>0.75</sub>Mo<sub>1.17</sub>W<sub>0.83</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, **120**, 353  $M_2RETa_6Br_{15}O_3$  (M = monovalent cation; RE = rare earths), 120, 43 ε-Na<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>, 119, 400 TaCu<sub>3</sub>Te<sub>4</sub>, 117, 247 NaSn<sub>2</sub>Cl<sub>5</sub>, 115, 158 Tb<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, 117, 213 Na<sub>2</sub>SnSe<sub>3</sub> with sechser single chains, 117, 356  $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O} \ (M = \text{K,NH}_4), 118, 341$  $NaM_x^{IV}(T_1,Z_1)_{2-x}(PO_4)_3$  ( $M = Nb,Mo; 0 \le x \le 1$ ), 114, 224 ThFe<sub>5</sub>P<sub>3</sub>, 117, 80 α-Na<sub>2</sub>UO<sub>4</sub>, 115, 299  $Th_4Fe_{17}P_{10}O_{1-x}$ , 117, 80

thiosulfate cancrinite, hydrothermally synthesized, 117, 386

β-Na<sub>2</sub>UO<sub>4</sub>, 115, 299

| TiO <sub>2</sub> , chromium induced changes, <b>114</b> , 364<br>TiS,VS,TiSe,VSe monochalcogenides, <b>114</b> , 346                                                                                         | Deuterium and hydrogen, solubility in crystalline Pd <sub>9</sub> Si <sub>2</sub> , <b>120</b> , 90                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TiZn <sub>16</sub> , <b>118</b> , 219<br>Ti <sub>3</sub> Zn <sub>22</sub> , <b>118</b> , 219                                                                                                                 | Sr(OD) <sub>2</sub> , crystal structure, 119, 157                                                                                                                        |
| $A_4\text{Tl}_2\text{CO}_3\text{O}_6$ (A = Ca,Sr,Ba), 116, 321                                                                                                                                               | Dielectric properties                                                                                                                                                    |
| $Tl_2GeTe_3$ , 117, 351                                                                                                                                                                                      | Ba <sub>2</sub> Fe <sub>2</sub> Ti <sub>4</sub> O <sub>13</sub> , <b>120</b> , 121<br>Differential scanning calorimetry                                                  |
| $TIV_{5-y}Fe_yS_8$ ( $y = 0.5-1.5$ ), <b>119</b> , 147                                                                                                                                                       | $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O$ , 114, 42                                                                                                    |
| Tm <sub>2</sub> Fe <sub>2</sub> Si <sub>2</sub> C, 114, 66                                                                                                                                                   | Differential thermal analysis                                                                                                                                            |
| U <sub>3</sub> Co <sub>4</sub> Ge <sub>7</sub> , <b>115</b> , 247                                                                                                                                            | Ag <sub>2</sub> S-Ga <sub>2</sub> S <sub>3</sub> -GeS <sub>2</sub> , phase diagram, analysis by DTA and XRD, 117,                                                        |
| $U_3Ni_{3,34}P_6$ , 116, 307                                                                                                                                                                                 | 189                                                                                                                                                                      |
| $(NH_4)_2V_3O_8$ , 114, 499                                                                                                                                                                                  | Diffusion                                                                                                                                                                |
| $A_2V_4O_9$ , $(A = Rb,Cs)$ , 115, 174                                                                                                                                                                       | chemical, Bi <sub>2</sub> Sr <sub>2</sub> CaCu <sub>2</sub> O <sub>8</sub> , <b>116</b> , 314                                                                            |
| $(V^{IV}O)[V^{V}O_4] \cdot 0.5[C_3N_2H_{12}], 120, 137$                                                                                                                                                      | $La_{1-x}Ca_xCrO_{3-\delta}$ , <b>115</b> , 152                                                                                                                          |
| VOHPO <sub>4</sub> · 1/2H <sub>2</sub> O, transformation to $\gamma$ -(VO) <sub>2</sub> P <sub>2</sub> O <sub>7</sub> , 119, 349                                                                             | Disorder                                                                                                                                                                 |
| $M_2(WO_3)_3SeO_3$ ( $M = NH_4,Rb,Cs$ ), 120, 112                                                                                                                                                            | Cu in CuCrP <sub>2</sub> S <sub>6</sub> , <b>116</b> , 208                                                                                                               |
| WTh <sub>8</sub> Zr <sub>18</sub> F <sub>4</sub> O <sub>53</sub> , superstructure, associating anion-excess and anion-                                                                                       | Doping                                                                                                                                                                   |
| deficient blocks, 115, 283                                                                                                                                                                                   | hole and electron, $RNiO_3$ ( $R = La,Nd$ ), 116, 146                                                                                                                    |
| Y <sub>2</sub> Ba <sub>3</sub> Cu <sub>3</sub> Co <sub>2</sub> O <sub>12</sub> , <b>115, 4</b> 07                                                                                                            | DSC, see Differential scanning calorimetry                                                                                                                               |
| YBaCuFeO <sub>5</sub> , <b>114</b> , 24                                                                                                                                                                      | DTA, see Differential thermal analysis                                                                                                                                   |
| $Y_2(Zr_yTi_{1-y})_2O_7$ , 117, 108                                                                                                                                                                          | Durapatite                                                                                                                                                               |
| ZnCr <sub>2</sub> S <sub>4</sub> , 118, 43                                                                                                                                                                   | induced radiation damage, analysis by TEM, 116, 265                                                                                                                      |
| ZnCr <sub>2</sub> Se <sub>4</sub> , 118, 43                                                                                                                                                                  | lead-calcium, cation effects in oxidative coupling of methane, 114,                                                                                                      |
| $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$ , <b>118</b> , 303                                                                                                                                            | 138                                                                                                                                                                      |
| Zn <sub>2</sub> (OH)PO <sub>4</sub> , <b>114</b> , 151                                                                                                                                                       | Dysprosium                                                                                                                                                               |
| Zn <sub>2</sub> P <sub>2</sub> O <sub>7</sub> , <b>119</b> , 219                                                                                                                                             | $Ba_{5-y}Sr_yDy_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ , structural study, <b>118</b> , 180                                                                                        |
| Zn <sub>2</sub> SiO <sub>4</sub> , Fe-doped, 117, 16                                                                                                                                                         | Bi <sub>3</sub> Dy <sub>5</sub> O <sub>12</sub> , related phases, synthesis and characterization, 116, 68                                                                |
| $Zn_3V_4(PO_4)_6$ , 115, 140                                                                                                                                                                                 | Bi <sub>2</sub> O <sub>3</sub> -Dy <sub>2</sub> O <sub>3</sub> , low-temperature stable phase, 120, 32                                                                   |
| $\alpha$ -MZr <sub>3</sub> F <sub>15</sub> series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), <b>118</b> , 389                                                                                                             | $DyAO_4$ (A = Nb,Ta), relationship between covalence and displacive                                                                                                      |
| $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$ , 117, 275                                                                                                                                                                   | phase transition temperature, 116, 28                                                                                                                                    |
| $Zr_2(WO_4)(PO_4)_2$ , <b>120</b> , 101<br>Cyclohexaphosphates                                                                                                                                               | $DyAgSb_2$                                                                                                                                                               |
| [NH <sub>3</sub> -(CH <sub>2</sub> ) <sub>2</sub> -NH <sub>2</sub> -(CH <sub>2</sub> ) <sub>2</sub> -NH <sub>3</sub> ] <sub>2</sub> P <sub>6</sub> O <sub>18</sub> · 2H <sub>2</sub> O, structural, DSC, and | with HfCuSi <sub>2</sub> -type structure, preparation, 115, 305                                                                                                          |
| IR analysis, <b>114</b> , 42                                                                                                                                                                                 | magnetism and crystal structure, 115, 441                                                                                                                                |
| 11 analysis, 114, 42                                                                                                                                                                                         | DyBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-y</sub> , FT-IR skeletal study, 119, 36                                                                                       |
| n.                                                                                                                                                                                                           | DyCuAs <sub>2</sub> , with HfCuSi <sub>2</sub> -type structure, preparation, 115, 305                                                                                    |
| D                                                                                                                                                                                                            | $Dy_2O_3$ , cation array structure, 119, 131                                                                                                                             |
| Debye model                                                                                                                                                                                                  | DyOCuSe, powder X-ray and IR studies, 118, 74                                                                                                                            |
| -sub-quasi-chemical approximation, thermodynamics of binary mixed                                                                                                                                            | DyTa <sub>6</sub> Br <sub>18</sub> , crystal structure, <b>118</b> , 274                                                                                                 |
| crystals, 115, 368                                                                                                                                                                                           | $MDyTa_6Br_{18}$ ( $M = K,Rb,Cs$ ), crystal structure, 118, 274                                                                                                          |
| Decomposition                                                                                                                                                                                                | $M_2$ DyTa <sub>6</sub> Br <sub>15</sub> O <sub>3</sub> ( $M =$ monovalent cation), synthesis and crystal struc-                                                         |
| photoassisted, salicyclic acid on TiO <sub>2</sub> and Pd/TiO <sub>2</sub> films, <b>119</b> , 339                                                                                                           | ture, <b>120</b> , 43                                                                                                                                                    |
| thermal, see Thermal decomposition                                                                                                                                                                           | DyTi <sub>2</sub> Al <sub>20</sub> , with CeCr <sub>2</sub> Al <sub>20</sub> -type structure, <b>114</b> , 337                                                           |
| Defect chemistry                                                                                                                                                                                             | $(1 - x)ZrO_2 \cdot xDyO_{1.5}$ , microdomains, solid solutions, and defect                                                                                              |
| $(1-x)Ag_2SO_4-xCaSO_4$ (x = 0.01-0.20), 116, 232                                                                                                                                                            | fluorite to C-type sesquioxide transition in, analysis, 120, 290                                                                                                         |
| $(1-x)\text{CeO}_2 \cdot x\text{YO}_{1.5}$ and $(1-x)\text{ZrO}_2 \cdot x\text{RO}_{1.5}$ (R = Ho,Dy,Tb,Gd),                                                                                                 | _                                                                                                                                                                        |
| defect fluorite to C-type sesquioxide transition in, analysis, 120,                                                                                                                                          | E                                                                                                                                                                        |
| 290                                                                                                                                                                                                          |                                                                                                                                                                          |
| effect of oxygen defect on strong-metal-support interaction between                                                                                                                                          | Elastic constants                                                                                                                                                        |
| Pt TiO <sub>2</sub> (rutile)(110) surface, 119, 237                                                                                                                                                          | $\alpha$ -Al <sub>2</sub> O <sub>3</sub> , relationship to valence force constants, 116, 378                                                                             |
| $Fe_{1-x}O$ , paracrystalline descriptions, 117, 398                                                                                                                                                         | Electrical conductivity                                                                                                                                                  |
| Y <sub>3</sub> TaO <sub>7</sub> EXAFS analysis and reinvestigation of structure, 114, 79                                                                                                                     | Eu <sub>2</sub> Ba <sub>2</sub> Cu <sub>2</sub> Ti <sub>2</sub> O <sub>11</sub> , <b>119</b> , 80                                                                        |
| Defect structure                                                                                                                                                                                             | $M_2$ HPO <sub>4</sub> - $M_2$ HPO <sub>4</sub> -H <sub>2</sub> O ( $M,M' = Na,K,NH_4$ ), 119, 68                                                                        |
| BaMnO <sub>3-y</sub> $(0.22 \le y \le 0.40)$ , 117, 21                                                                                                                                                       | La <sub>2</sub> Ba <sub>2</sub> Cu <sub>2</sub> Sn <sub>2</sub> O <sub>11</sub> , <b>119</b> , 80                                                                        |
| La/Sr vacancy, in La <sub>0.8</sub> Sr <sub>0.2</sub> MnO <sub>3</sub> imaging by HREM, 114, 211                                                                                                             | La <sub>2</sub> Ba <sub>2</sub> Cu <sub>2</sub> Ti <sub>2</sub> O <sub>11</sub> , <b>119</b> , 80                                                                        |
| MgO-doped LiNbO <sub>3</sub> , model, <b>118</b> , 148                                                                                                                                                       | LaCo <sub>0.2</sub> Fe <sub>0.8</sub> O <sub>3-\(\delta\)</sub> , doped with Sr, <b>118</b> , 117<br>U <sub>3</sub> Ni <sub>3.34</sub> P <sub>6</sub> , <b>116</b> , 307 |
| Nb <sub>2-x</sub> P <sub>3-y</sub> O <sub>12</sub> , <b>116</b> , 335<br>NdMnO. effect of overen postoichiometry, <b>118</b> , 53                                                                            | Electrical properties                                                                                                                                                    |
| NdMnO <sub>3+y</sub> , effect of oxygen nonstoichiometry, <b>118</b> , 53                                                                                                                                    | BaCu <sub>2</sub> S <sub>2</sub> , <b>117</b> , 73                                                                                                                       |
| and ordering principles, 1201, 1212, and 1222 (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O superconductors, 114, 369                                                                                                           | $\alpha$ -BaCu <sub>4</sub> S <sub>3</sub> , 117, 73                                                                                                                     |
| PrMnO <sub>3+y</sub> , effect of oxygen nonstoichiometry, <b>118</b> , 53                                                                                                                                    | BaTa <sub>2</sub> S <sub>5</sub> , 116, 392                                                                                                                              |
| Dehydration                                                                                                                                                                                                  | Ca <sub>3</sub> CoN <sub>3</sub> , <b>119</b> , 161                                                                                                                      |
| Li(H <sub>2</sub> O) <sub>4</sub> B(OH) <sub>4</sub> · 2H <sub>2</sub> O, <b>115</b> , 549                                                                                                                   | $Ln_2MCo_2O_7$ ( $Ln = Sm,Gd; M = Sr,Ba$ ), 114, 286                                                                                                                     |
| NaAlO <sub>2</sub> · $5/4$ H <sub>2</sub> O, product crystal structure, <b>115</b> , 126                                                                                                                     | $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$ , 116, 290                                                                                                                    |
| thermal, $Cs_2LnCl_6 : 3H_2O$ ( $Ln = La-Nd$ ), 116, 329                                                                                                                                                     | LaMo <sub>8</sub> $_{\bullet}O_{\bullet}$ ( $r = 0$ and 0.3) containing isolated Mo <sub>8</sub> clusters 117, 261                                                       |

 $(La_{1-x}Nd_x)CrO_3$   $(0 \le x \le 1.0)$ , relationship with crystal structure, 114, 236 LaSrFeO<sub>4</sub>, effects of substitution of alkali earths or Y for La, 115, 456  $NaM_x^{IV}(Ti,Zr)_{2\sim x}(PO_4)_3$   $(M = Nb,Mo; 0 \le x \le 1), 114, 224$ NbN., 117, 294  $Nd(Cr_{1-x}Mn_x)O_3$  (0  $\leq x \leq 0.6$ ), relationship to cation-anion-cation overlap, 118, 367  $Pb_{2-x}Ln_xRu_2O_{7-y}$  (*Ln* = Nd,Gd), **114**, 15  $MP_2O_7$  (M = Mo, W), 115, 146 Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>, 116, 141 Sr<sub>3</sub>V<sub>2</sub>O<sub>6,99</sub>, 118, 292 Electrical resistivity  $ACu_7S_4$  (A = Tl,K,Rb), 115, 379 Mn<sub>x</sub>TaS<sub>2</sub>, intercalation compounds, 114, 1 Electrides  $[Cs^{+}(15\text{-crown-5})(18\text{-crown-6})e^{-}]_{6} \cdot (18\text{-crown-6}), \text{ properties, } 117, 309$ Electrocatalysts LaNiO<sub>3</sub> and NiCo<sub>2</sub>O<sub>4</sub>, preparation by sol-gel route, 116, 157 Electrochemistry H<sub>r</sub>Nb<sub>2</sub>O<sub>5</sub>, 115, 260 LiMn<sub>2</sub>O<sub>4</sub> and Li<sub>1-x</sub>Mn<sub>2</sub>O<sub>4</sub> as 4-V Li-cell cathodes, comparison, letter to editor, 119, 216 Electron beam deposition hot-filament assisted, crystalline cubic BN, 118, 99 Electron diffraction BiLa<sub>2</sub>O<sub>4.5</sub>, 116, 72 Cs<sub>4</sub>Sb<sub>4</sub>O<sub>8</sub>(Si<sub>4(1-x)</sub>Ge<sub>4x</sub>O<sub>12</sub>), solid solution, electron and X-ray diffraction and <sup>29</sup>Si MAS NMR analysis, 114, 528  $Sn_{1-p}Cr_2S_{4-p}$ , 115, 7 Electronic absorption NaCo<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(OH), 115, 360 Electronic anisotropy Cs<sub>2</sub>[AuCl<sub>2</sub>][AuCl<sub>4</sub>], local, probing with anomalous scattering diffraction, 118, 383 Electronic distortions out-of-center, around octahedrally coordinated d<sup>0</sup> transition metals, 115, 395 Electronic lone pairs localization in α-PbO, SnO, Pb<sub>1-x</sub>(TiO)<sub>x</sub>O, Pb<sub>3</sub>O<sub>4</sub>, Pb<sub>3</sub>(V,P)<sub>2</sub>O<sub>8</sub>, 114, 459 Electronic properties BaNb<sub>0.8</sub>S<sub>3- $\delta$ </sub>, 115, 427 BaNbS<sub>3</sub>, 115, 427 copper sulfide films of variable composition, 114, 469 A, A'CoRuO<sub>6</sub> (A, A' = Sr, Ba, La), 114, 174  $\text{Li}_{x}\text{Na}_{y}\text{V}_{2}\text{O}_{5}$  (0.23  $\leq x + y \leq 0.37$ ), 118, 10 SrCoO<sub>3-8</sub>, electronic states, effects of oxygen, 119, 76 SrMnO<sub>3-x</sub>, 114, 242 Electronic spectra Ba<sub>4</sub>LiCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub> and Ba<sub>4</sub>NaCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, 119, 359  $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$  and  $Na_4K[Cu(HIO_6)_2] \cdot 12H_2O$ , 115, 208 oxidic lithium spinels, antiferromagnetic A-B interactions between tetrahedral  $3d^5$  and  $3d^5$  or  $3d^3$  octahedral cations, 120, 244 Electronic structure InCdBr<sub>3</sub>, 116, 45 Electron microscopy  $Bi_2TeO_5-Bi_2Te_2O_7$ , phase region, 116, 240 Electron paramagnetic resonance  $\alpha$ - and  $\beta$ -AlF<sub>3</sub> · 3H<sub>2</sub>O, incorporation of Cu(II), 116, 249 BaCuO<sub>2+x</sub>, 119, 50  $\alpha$ -,  $\beta$ -, and  $\gamma$ -Fe<sub>2</sub>WO<sub>6</sub> phases, analysis at low temperatures, 120, 216  $Y_2BaCuO_5-YBa_2Cu_3O_{6+x}$ , 116, 136 Electrostatic energy in α-PbO, SnO, Pb<sub>1-x</sub>(TiO)<sub>x</sub>O, Pb<sub>3</sub>O<sub>4</sub>, Pb<sub>3</sub>(V,P)<sub>2</sub>O<sub>8</sub> and BiSrCaCuO-

type superconductor, calculation, 114, 459

**Emissions** green-to-blue up-conversion, from U4+ ion in Cs2ZrCl6, effect of temperature, 116, 113 Enthalpy Ho<sub>2</sub>(TeO<sub>3</sub>)<sub>3</sub> and Te<sub>4</sub>O<sub>11</sub>, tellurite formation, determination, 118, 210 EPR, see Electron paramagnetic resonance  $Ba_{5-y}Sr_yEr_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ , structural study, **118**, 180 Bi<sub>3</sub>Er<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68 CsErTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274  $ErAO_A$  (A = Nb.Ta), relationship between covalence and displacive phase transition temperature, 116, 28 ErAgSb<sub>2</sub> with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 ErBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-y</sub>, FΓ-IR skeletal study, 119, 36 Er<sub>2</sub>Ba<sub>2</sub>CuPtO<sub>8</sub>, synthesis and characterization, 120, 316 ErCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 Er<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub>, structural characterization by neutron diffraction, 115, 324 Er<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131 Er<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203 ErTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274  $MErTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274  $M_2$ ErTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43 Er<sub>2</sub>(TeO<sub>3</sub>)<sub>3</sub> and Te<sub>4</sub>O<sub>11</sub>, tellurite formation, enthalpy determination, 118, 210 ErTi<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, 114, 337 ESR, see Electron paramagnetic resonance Ethanol incipient chemical reaction with scratched silicon surface, 120, 96 Europium BaEu(CO<sub>3</sub>)<sub>2</sub>, optical properties, correlation to crystallographic structure, 116, 286 Bi<sub>3</sub>Eu<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68 Bi<sub>2</sub>O<sub>3</sub>-Eu<sub>2</sub>O<sub>3</sub>, low-temperature stable phase, 120, 32 in doping of KMgLa(PO<sub>4</sub>)<sub>2</sub> phosphate, optical and structural investigation, 114, 282  $EuAO_4$  (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28  $EuT_2Al_{20}$  (T = Ti,Mo,W), with  $CeCr_2Al_{20}$ -type structure, 114, 337 EuBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-v</sub>, FT-IR skeletal study, 119, 36 Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80 Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-8</sub>, synthesis, structure, and superconductivity, 119, Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>Q<sub>12</sub> intergrowth between 123 and 0201 structures, 115, 1 Eu<sub>2-r</sub>Ce<sub>r</sub>CuO<sub>4</sub>, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491 EuNiO<sub>3</sub>, preparation, crystal structure, and metal-insulator transition, **120,** 170 Eu<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131 EuTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274  $M_2$ EuTa<sub>6</sub>Br<sub>18</sub> ( $M = K_1$ Rb,Cs), crystal structure, 118, 274  $MEuTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274  $M_2$ EuTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43 Eu<sub>2</sub>(TeO<sub>3</sub>)<sub>3</sub> and Te<sub>4</sub>O<sub>11</sub>, tellurite formation, enthalpy determination, 118, 210 α-EuZr<sub>3</sub>F<sub>15</sub> series, cationic distribution, 118, 389 Na<sub>3</sub>La<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>F: Eu<sup>3+</sup>, optical properties, correlation to crystallo-

graphic structure, 116, 286

EXAFS, see Extended X-ray absorption fine structure

114, 52

rare-earth mixed oxide, magnetic susceptibility effect of crystal field,

Extended X-ray absorption fine structure LiNb(OH)OPO<sub>4</sub>, structural analysis, **114**, 317 Li<sub>0.8</sub>VO<sub>2</sub>, **114**, 184 Mn<sub>3</sub>Al<sub>2-x</sub>Cr<sub>x</sub>Ge<sub>3</sub>O<sub>12</sub>, **118**, 261 Y<sub>3</sub>TaO<sub>7</sub>, **114**, 79

F

Ferroelectricity
Aurivillius phases, 114, 112
Ferromagnetism, see also Antiferromagnetism
LaMnO<sub>3</sub>, 114, 294

NdNiO<sub>3</sub>, 114, 294

Films

copper sulfide, variable composition, optical and electrical properties, 114, 469

Sm<sub>2</sub>Sr<sub>6</sub>Cu<sub>8</sub>O<sub>17+8</sub>, analysis by HREM, **116**, 300 thin

BN, crystalline cubic, hot-filament-assisted electron beam deposition, 118, 99

La<sub>1-x</sub>MnO<sub>3-δ</sub>, self-doped, giant magnetoresistance, **117**, 420 pulsed laser deposited, Sm<sub>1-x</sub>Sr<sub>x</sub>Sr<sub>x</sub>CuO<sub>2.5-x/2+δ</sub>, perovskite phases and phasoids, **116**, 37

 $Sn_{1-x}Co_xO_y$  (0 <  $x \le 0.15$ ), structural models, 116, 256

TiO<sub>2</sub>-Pd films, photoassisted decomposition of salicyclic acid, 119, 339 Fluorine

 $\alpha$ - and  $\beta$ -AlF<sub>3</sub> · 3H<sub>2</sub>O, incorporation of Cu(II), analysis by ESR, 116, 249

 $AI_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , synthesis and crystal structure, **120**, 197

BaEu(CO<sub>3</sub>)<sub>2</sub>, optical properties, correlation to crystallographic structure, 116, 286

 $Ba_2M_2F_7Cl$  ( $\dot{M} = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$ ), synthesis, magnetic behavior, and structural study, 115, 98

 $Ba_2MM'F_7Cl(M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+})$ , synthesis, magnetic behavior, and structural study, 115, 98

Bi<sub>3</sub>NF<sub>6</sub>, synthesis and structure, 114, 73

LiF-ZrF<sub>4</sub>, phase diagram, reanalysis with Li<sub>4</sub>ZrF<sub>8</sub> and Li<sub>3</sub>Zr<sub>4</sub>F<sub>19</sub> crystal structures. **120.** 187

Li<sub>3</sub>Zr<sub>4</sub>F<sub>19</sub>, crystal structure, in reanalysis of LiF-ZrF<sub>4</sub> phase diagram, **120**, 187

Li<sub>4</sub>ZrF<sub>8</sub>, crystal structure, in reanalysis of LiF-ZrF<sub>4</sub> phase diagram, 120, 187

Lu<sub>3</sub>O<sub>2</sub>F<sub>5</sub>, synthesis and crystal structure, 119, 125

Na<sub>3</sub>La<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>F:Eu<sup>3-</sup>, optical properties, correlation to crystallographic structure, **116**, 286

 $(NH_4)_3FeF_6$ ,  $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$  with related structure, powder X-ray and neutron diffraction analysis, 115, 197

PbF<sub>2</sub>/GeO<sub>2</sub>/WO<sub>3</sub>, glass doped with Tm<sup>3+</sup> and Tm<sup>3+</sup>/Tb<sup>3+</sup>, blue upconversion emission, 115, 71

WTh<sub>8</sub>Zr<sub>18</sub>F<sub>4</sub>O<sub>53</sub>, superstructure, associating anion-excess and anion-deficient blocks, **115**, 283

 $\alpha$ -MZr<sub>3</sub>F<sub>15</sub> series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), cationic distribution, 118, 389

Fluorite homologous series

Pr<sub>9</sub>O<sub>16</sub>, crystal structures, 118, 133

 $Pr_{10}O_{18}$ , oxygen-deficient fluorite-related  $R_nO_{2-n}$ , structures, 118, 141 Fourier-transform infrared spectroscopy

BaAl<sub>9</sub>O<sub>14.5</sub>, BaAl<sub>12</sub>O<sub>19</sub>, and BaAl<sub>14</sub>O<sub>22</sub>, **117**, 8  $RBa_2Cu_3O_{7-y}$  (R = Ln or Y), skeletal study, **119**, 36 BaFe<sub>12</sub>O<sub>19</sub>, **117**, 8 [n-C<sub>9</sub>H<sub>19</sub>NH<sub>3</sub>]<sub>2</sub>CuCl<sub>4</sub>, **117**, 97 N(CH<sub>3</sub>)<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> · H<sub>2</sub>O, **120**, 343 Nd<sub>2-x</sub>Ce<sub>x</sub>CuO<sub>4</sub>, **119**, 36 NH<sub>2</sub>HSO<sub>3</sub>, **116**, 217

Fructose

mediated synthesis of  $\beta$ -Co(OH)<sub>2</sub>, 114, 550

G

Gadolinium

 $Ba_{5-y}Sr_yGd_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ , structural study, 118, 180  $Bi_3Gd_5O_{12}$ , related phases, synthesis and characterization, 116, 68

Bi<sub>2</sub>O<sub>3</sub>-Gd<sub>2</sub>O<sub>3</sub>, low-temperature stable phase, 120, 32

Ce<sub>0.818</sub>Gd<sub>0.182</sub>O<sub>1.909-y</sub>, nonstoichiometric 10 mol%, phase diagram, **117**, 392

GdAO<sub>4</sub> (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28

GdAgSb2

with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441

 $Gd_6T_4Al_{43}$  (T = Ti,V,Nb,Ta), with  $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131

GdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-v</sub>, FT-IR skeletal study, 119, 36

Gd<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-8</sub>, synthesis, structure, and superconductivity, 119, 224

 $GdBa_2SbO_6$ , synthesis and characterization, as substrates for  $YBa_2$   $Cu_3O_{7-\delta}$ , 116, 193

Gd<sub>2-x</sub>Ce<sub>x</sub>CuO<sub>4</sub>, oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491

Gd<sub>2</sub>MCo<sub>2</sub>O<sub>7</sub> (M = Sr,Ba), synthetic, structural, electrical, and magnetic properties, 114, 286

GdCuAs2, with HfCuSi2-type structure, preparation, 115, 305

 $Gd_{1-x}A_xMnO_3$  (A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204

Gd<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

GdOCuSe, powder X-ray and IR studies, 118, 74

GdRuC<sub>2</sub>, with filled NiAs structure, 118, 158

(Gd<sub>e</sub>Sn<sub>1-e</sub>S)<sub>1.16</sub>(NbS<sub>2</sub>)<sub>3</sub>, crystal structure and synthesis, 114, 435

GdTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274

 $MGdTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274

 $M_2$ GdTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43

M'-GdTaO<sub>4</sub>, synthesis and characterization, letter to editor, **118**, 419 GdTi<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, **114**, 337

α-GdZr<sub>3</sub>F<sub>15</sub> series, cationic distribution, 118, 389

Na<sub>2</sub>GdOPO<sub>4</sub>, solid-state synthesis, X-ray powder diffraction, and IR data, 120, 275

 $Pb_{2-x}Gd_xRu_2O_{7-y}$ , synthesis, crystal structure, and electrical properties, 114, 15

PrPd<sub>3</sub>As<sub>2</sub> arsenides, preparation, 115, 37

Ti<sub>2</sub>(Ba<sub>2</sub>Gd)Gd<sub>2-x</sub>Ce<sub>x</sub>Cu<sub>2</sub>O<sub>13</sub>, design and synthesis, 114, 57

(1 - x)ZrO<sub>2</sub> · xGdO<sub>1.5</sub>, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290

Gallium

 $Ag_2S-Ga_2S_3-GeS_2$ , phase diagram, analysis by DTA and XRD, 117, 189

CaCu<sub>0.15</sub>Ga<sub>3.85</sub>, crystal structure, analysis by powder X-ray diffraction data, **114**, 342

 $Ca_xSn_xGa_{8-2x}O_{12}$  (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of  $Sn^{4+}$  on, 118, 6

 $AGa_2X_4$  (A = Cd,Hg; X = S,Se), compounds crystallizing in thiogallatetype structure, lattice dynamical calculations, 114, 442

GaMo<sub>4</sub>S<sub>8</sub>-type compounds, tetrahedral clusters: metal bonding analysis, 120, 80

 $Ga_2O_3(ZnO)_m$  (m = 7.8,9,16), in  $In_2O_3-ZnGa_2O_4-ZnO$  system, 116,

InGaO<sub>3</sub>(ZnO)<sub>3</sub>, in In<sub>2</sub>O<sub>3</sub>-ZnGa<sub>2</sub>O<sub>4</sub>-ZnO system, synthesis and singlecrystal data, 116, 170  $\text{Li}_{0.5}(\text{FeCr})_x \text{Ga}_{2.5-2x} \text{O}_4$  and  $\text{Li}_{0.5} \text{Fe}_x \text{Ga}_{2.5-x} \text{O}_4$ , tetrahedral  $3d^5$  and  $3d^5$  or  $3d^3$  octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, 120, 244

mixed valent nickel and manganese oxide ceramics, superconducting properties, 116, 355

 $Zn_{1-z}Mn_zGa_2Se_4$ , energy gap values and T(z) diagram, 115, 416 Garnet

 $\text{Ca}_x \text{Sn}_x \text{Ga}_{8-2x} \text{O}_{12}$  (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of  $\text{Sn}^{4+}$  on, 118, 6

Gels

Al-O-R-O-Al, characterization by IR, and <sup>13</sup>C and <sup>27</sup>Al NMR techniques, **119**, 319

### Germanium

Ag<sub>2</sub>MnGeTe<sub>4</sub>, crystal symmetry, 115, 192

 $Ag_2S-Ga_2S_3-GeS_2$ , phase diagram, analysis by DTA and XRD, 117, 189

Cd<sub>2-x</sub>GeO<sub>4-x-3y</sub>N<sub>2y</sub>, preparation and characterization, 119, 304

CsGeBr<sub>3</sub>, pressure-induced phase transition, analysis by X-ray diffraction and Raman spectroscopy, **118**, 20

Cs<sub>4</sub>Sb<sub>4</sub>O<sub>8</sub>(Si<sub>4(1-x)</sub>Ge<sub>4x</sub>O<sub>12</sub>), solid solution, electron and X-ray diffraction and <sup>29</sup>Si MAS NMR analysis, **114**, 528

CuNd<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>, crystal structure, growth, and magnetic and spectroscopic properties, 120, 254

 $MGe_xTe_2$  (M = Nb,Ta;  $1/3 \le x \le 1/2$ ), origin of short interslab Te-Te contacts, analysis, 119, 394

KNB<sub>5</sub>GeO<sub>16</sub> · 2H<sub>2</sub>O, with 2D channel network, 115, 373

Mn<sub>3</sub>Al<sub>2-x</sub>Cr<sub>x</sub>Ge<sub>3</sub>O<sub>12</sub>, X-ray absorption spectroscopic and magnetic analysis, 118, 261

Na<sub>2</sub>BeGeO<sub>4</sub>, structure and ionic conductivity, 118, 62

PbF<sub>2</sub>/GeO<sub>2</sub>/WO<sub>3</sub>, glass doped with Tm<sup>3+</sup> and Tm<sup>3+</sup>/Tb<sup>3+</sup>, blue upconversion emission, 115, 71

PrMnOGeO<sub>4</sub>, preparation and crystal structure, 120, 7

Tl<sub>2</sub>GeTe<sub>3</sub>, crystal structure, 117, 351

U<sub>3</sub>Co<sub>4</sub>Ge<sub>7</sub>, crystal structure and magnetic properties, 115, 247

U<sub>2</sub>Fe<sub>17-x</sub>Ge<sub>x</sub>C<sub>y</sub>, magnetic properties, 115, 13

Giant magnetoresistance

effects in  $Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta}$ , effects, 117, 424

in self-doped La<sub>1-x</sub>MnO<sub>3-6</sub> thin films, 117, 420

## Glasses

polarizable and OH-containing, applications to MOS devices, mechanism 120, 54

TiO<sub>2</sub>-NaPO<sub>3</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> system, optically nonlinear, Raman scattering and XAFS analysis, 120, 151

ZnO-B<sub>2</sub>O<sub>2</sub>~SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub>, fluoride-containing, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212

# Glucose

mediated synthesis of  $\beta$ -Co(OH)<sub>2</sub>, 114, 550

Glycerol

mediated synthesis of  $\beta$ -Co(OH)<sub>2</sub>, 114, 550

Gold

AuNi<sub>2</sub>Sn<sub>4</sub>, crystal structure, 119, 142

 $MAu_2O_4$  (M = Sr,Ba), preparation and crystal structure, 118, 247

Cs<sub>2</sub>[AuCl<sub>2</sub>][AuCl<sub>4</sub>], local electronic anisotropy, probing with anomalous scattering diffraction, 118, 383

# H

## Hafnium

Ag<sub>4</sub>Hf<sub>3</sub>S<sub>8</sub>, crystal structure and conductivity, 115, 112

Ca<sub>3</sub>HfSi<sub>2</sub>O<sub>9</sub>, structure determination from powder diffraction, 115, 464 with HfCuSi<sub>2</sub>, ternary arsenides and antimonides with related structure, preparation, 115, 305

HfO<sub>2</sub>, powders, characterization by transmission electron microscopy, 119, 289

High-resolution electron microscopy

BaCoO<sub>3-v</sub>, 120, 327

La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub>La/Sr vacancy defects, 114, 211

 $La_{0.8}Sr_{0.2}MnO_3$ , ordered La(Sr)-deficient nonstoichiometry in, 120, 175  $Sm_2Sr_6Cu_8O_{17+8}$  films, 116, 300

 $Sr_{1-x}La_xTiO_{3+0.5}x$  layer structure, 117, 88

High-resolution electron spectroscopy

 $Bi_{2-x}Nb_xO_{3+x}$  solid solution, 119, 311

### Holmium

 $Ba_{5-\nu}Sr_{\nu}Ho_{2-x}Al_{2}Zr_{1+x}O_{13+x/2}$ , structural study, 118, 180

Bi<sub>3</sub>Ho<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68

HoAO<sub>4</sub> (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28

HoAgSb<sub>2</sub>

with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

magnetism and crystal structure, 115, 441

HoBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-v</sub>, FT-IR skeletal study, 119, 36

Ho<sub>2</sub>Ba<sub>2</sub>CuPtO<sub>8</sub>, synthesis and characterization, 120, 316

HoCuAs2, with HfCuSi2-type structure, preparation, 115, 305

 $\text{Ho}_2\text{Cu}_2\text{O}_5$ , structural characterization by neutron diffraction, 115, 324  $\text{Ho}_6\text{Mo}_4\text{Al}_{43}$ , related structure of  $A_6T_4\text{Al}_{43}$  (A = Y, Nd, Sm, Gd-Lu, U; T = Ti, V, Nb, Ta), 116, 131

Ho<sub>x</sub>Mo<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, 117, 269

Ho<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

HoSr<sub>2</sub>Cu<sub>2</sub> Mo<sub>0</sub> O<sub>7</sub> S<sub>4</sub>, synthesis and crystal structure, 119, 115

HoTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274

MHoTa<sub>6</sub>Br<sub>18</sub> (M = K,Rb,Cs), crystal structure, 118, 274

 $M_2$ HoTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, **120**, 43

Ho<sub>2</sub>(TeO<sub>3</sub>)<sub>3</sub> and Te<sub>4</sub>O<sub>11</sub>, tellurite formation, enthalpy determination, 118, 210

HoTi<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, 114, 337

Ho<sub>x</sub>W<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, 117. 269

 $(1 - x)ZrO_2 \cdot xHoO_{1.5}$ , microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290

Homogeneity

 $PbO-ZrO_2$  solution derived powders, related problems, 117, 343 Homogeneity range

and physical properties, intercalation compounds of  $Mn_xTaS_2$ , 114, 1 HREM, see High-resolution electron microscopy Hydrogen

AgMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 117, 206

 $Al_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , synthesis and crystal structure, **120**, 197

BaVO(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) · H<sub>2</sub>O, synthesis, structure, and magnetism, 118, 241

 $Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O$ , hydrothermal synthesis and crystal structure, 116, 77

Ba(VO)<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(HSeO<sub>3</sub>)<sub>2</sub>, hydrothermal synthesis and crystal structure, **116**, 77

(CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>COO · (COOH)<sub>2</sub> · H<sub>2</sub>O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129

[n-C<sub>9</sub>H<sub>19</sub>NH<sub>3</sub>]<sub>2</sub>CuCl<sub>4</sub>, characterization by FTIR, 117, 97

 $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$ , crystal structure, determination from powder data, 117, 103

CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, transport, optical, and magnetic properties, 114, 159

(C<sub>18</sub>H<sub>30</sub>N<sub>3</sub>)<sub>2</sub> · [Si<sub>8</sub>O<sub>18</sub>(OH)<sub>2</sub>] · 41H<sub>2</sub>O, X-ray diffraction and NMR analysis, **120**, 231

CrOOH-CrO<sub>2</sub> system, CrO<sub>2</sub> from decomposition, interconversion in, 119, 13

```
CsHSO<sub>4</sub>
      phase transitions, 117, 412
      thermally induced phase transitions, 117, 414
   Cu(C<sub>4</sub>H<sub>5</sub>N<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, synthesis and characterization, 117, 333
   Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4, synthesis and structure determination
         with silica gels, 117, 256
   CuSr(HCOO)<sub>4</sub>, crystal structure and thermal decomposition, 117, 145
   and deuterium, solubility in crystalline PdoSi2, 120, 90
  H<sub>r</sub>Nb<sub>2</sub>O<sub>5</sub>, electrochemical investigations, 115, 260
  M_2HPO_4-M_2'HPO_4-H_2O (M_1M'=Na_1K_1NH_4), electrical conductivity
         measurements. 119, 68
  KH<sub>2</sub>PO<sub>4</sub>, crystal structure, 114, 219
  Li<sub>1-x</sub>H<sub>x</sub>IO<sub>3</sub>, protons, localization by single-crystal neutron diffraction,
         115, 309
   MgHOP<sub>4</sub> · 0.78H<sub>2</sub>O, ambient pressure and temperature synthesis,
         114, 598
  Na<sub>4</sub>H[Cu(H<sub>2</sub>TeO<sub>6</sub>)<sub>2</sub>] · 17H<sub>2</sub>O, crystal structure, electronic spectra, and
         XPS, 115, 208
   Na<sub>4</sub>K[Cu(HIO<sub>6</sub>)<sub>2</sub>] · 12H<sub>2</sub>O, crystal structure, electronic spectra, and
         XPS, 115, 208
  NaMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 115, 240
  N(CH<sub>3</sub>)<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> · H<sub>2</sub>O, FT-IR and polarized Raman spectra, 120, 343
   [NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O, structural, DSC, and
         IR analysis, 114, 42
  NH2HSO3, analysis by vibrational and surface enhanced Raman scat-
         tering, 116, 217
   ReH<sub>s</sub>, formation at high pressure, in situ diffraction study, 118, 299
   Si_{1-x}C_x: H alloys, structural properties and chemical ordering, 117, 427
  Sn<sub>4</sub>S<sub>9</sub>[(C<sub>3</sub>H<sub>7</sub>)<sub>4</sub>N]<sub>2</sub>, preparation and structural characterization, 114, 506
  Sn<sub>4</sub>S<sub>9</sub>[(C<sub>3</sub>H<sub>7</sub>)<sub>4</sub>N] · [(CH<sub>3</sub>)<sub>3</sub>NH], preparation and structural character-
         ization, 114, 506
   βSr(HCOO)<sub>2</sub>, crystal structure and thermal decomposition, 117, 145
   (VIVO)[VVO<sub>4</sub>] · 0.5[C<sub>3</sub>N<sub>2</sub>H<sub>12</sub>], synthesis, crystal structure, and struc-
         tural correlations with V<sub>2</sub>O<sub>5</sub> and other vanadyl compounds, 120,
   VO(HCO<sub>2</sub>)<sub>2</sub> · H<sub>2</sub>O, compounds based on double layers in, synthesis,
         117, 136
   Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}, synthesis and stability, 117, 275
Hydrogen bonding
   [Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O], 114, 102
   [Ba_2(OH)_2(H_2O)_{10}][Se_4], 120, 12
Hydrolysis catalysts
   and sol-gel technique, in preparation of crystalline structure of MgO,
         115, 411
Hydrothermal synthesis
   BaMo<sub>4</sub>O<sub>13</sub> · 2H<sub>2</sub>O, 116, 95
   BaV<sub>3</sub>O<sub>8</sub>, 117, 407
   Ba(VO)<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(HSeO<sub>3</sub>)<sub>2</sub>, 116, 77
   Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O, 116, 77
   Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O, 114, 359
   Cu<sub>0.5</sub>(OH)<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, 117, 157
   Cu_{0.5}[VOPO_4] \cdot 2H_2O, 117, 157
   Mn_2VO(PO_4)_2 \cdot H_2O, 115, 76
   NH<sub>4</sub>Sn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, 119, 197
   thiosulfate cancrinite, 117, 386
Hydroxide
   [Ba<sub>2</sub>(OH)<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>][Se<sub>4</sub>], synthesis and crystal structure, 120, 12
   Ca10-x-yCdxPby(PO4)6(OH)2, solid solutions, analysis by X-ray and IR
         spectroscopy, 116, 8
```

Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, induced radiation damage, analysis by TEM, 116,

(C<sub>18</sub>H<sub>30</sub>N<sub>3</sub>)<sub>2</sub> · [Si<sub>8</sub>O<sub>18</sub>(OH)<sub>2</sub>] · 41H<sub>2</sub>O, X-ray diffraction and NMR anal-

Co<sub>2</sub>(OH)PO<sub>4</sub>, structure-directing effect of organic additives, 114, 151

β-Co(OH)<sub>2</sub>, organic additive-mediated, synthesis, 114, 550

ysis, 120, 231

```
Cu<sub>2</sub>(OH)<sub>3</sub>NO<sub>3</sub>, magnetic behavior and exchange coupling, single crys-
        tal study, 116, 1
   Cu<sub>0.5</sub>(OH)<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal struc-
        ture, 117, 157
  glasses containing, applications to MOS devices, mechanism, 120, 54
  KOH
      concentrated basic media, quartz in, kinetics and dissolution mecha-
        nism, solvent influence, 118, 254
     incipient chemical reaction with scratched silicon surface, 120, 96
  layered double, Zn-Al, preparation by surface modification of layered
        compound, 117, 337
  Li(H<sub>2</sub>O)<sub>4</sub>B(OH)<sub>4</sub> · 2H<sub>2</sub>O, crystal structure and dehydration process,
         115, 549
  LiNb(OH)OPO<sub>4</sub>, structural analysis by XRD and EXAFS, 114, 317
  LiOH, concentrated basic media, quartz in, kinetics and dissolution
        mechanism, solvent influence, 118, 254
   (Mn_xZn_{1-x})(OH)(NO_3)H_2O(x = 0.53,1.00), synthesis and characteriza-
        tion, 118, 28
  Na<sub>4</sub>Al(PO<sub>4</sub>)<sub>2</sub>(OH), synthesis and characterization, 118, 412
  NaCo<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(OH), polarized electronic absorption spectra and crystal
        structure, 115, 360
  NaOH, concentrated basic media, quartz in, kinetics and dissolution
        mechanism, solvent influence, 118, 254
   (NH<sub>4</sub>)<sub>6</sub>[TeMo<sub>6</sub>O<sub>24</sub>] · Te(OH)<sub>6</sub> · 7H<sub>2</sub>O, single crystals, infrared and
        polarized Raman spectra, 118, 341
   (M^{2+})_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{2+} = Cu, Zn, Co; M^{3+} = Cr), charac-
        terization, 119, 246
  Me(OH)_2-SiO<sub>2</sub> (Me = Ca,Mg,Sr), mixtures, surface changes in basicity
         and species, role of mechanical activation, 115, 390
  Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, nucleation kinetics, analysis by X-ray and IR spec-
        troscopy, 116, 8
  related capacitance-voltage recovery effect in MOS capacitors passiv-
         ated by fluoride-containing ZnO-B<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub> glasses, 118,
        212
   VOHPO<sub>4</sub> · 1/2H<sub>2</sub>O, transformation to \gamma-(VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 119, 349
  [Zn_2Cr(OH)_6]X \cdot nH_2O, where X^- = 1/2 \text{ mal}^{2-}, cis-[Cr(mal)_2(H_2O)_2]^-,
         and 1/3[Cr(mal)_3]^{3-} (mal = malonate), malonate intercalation into,
  (Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O, cation distribution and coordina-
         tion chemistry, structural and spectroscopic study, 118, 303
   Zn<sub>2</sub>(OH)PO<sub>4</sub>, structure-directing effect of organic additives, 114, 151
Hydroxyapatite, see Durapatite
8-Hydroxyquinoline
  solid state reactions with CdX_2 (X = Cl, Br, I), 117, 416
Ignition reaction
   Ta<sub>2</sub>N formation in air, letter to editor, 119, 207
Impedance spectroscopy
  LiTaO<sub>3</sub>, 116, 185
Indium
   (AgIn)_{2(1-z)}(MnIn_2)_zTe_4, alloys, T(z) diagram and optical energy gap
   (Ca<sub>0.9</sub>In<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature
         thermoelectric performance, 120, 105
   Co<sub>x</sub>Cd<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub>, spinel solid solutions, structural, magnetic, and optical
         properties, 114, 524
   InCdBr<sub>3</sub>, synthesis, crystal structure, and electronic structure, 116, 45
   InGaO<sub>3</sub>(ZnO)<sub>3</sub>, in In<sub>2</sub>O<sub>3</sub>-ZnGa<sub>2</sub>O<sub>4</sub>-ZnO system, synthesis and single-
         crystal data, 116, 170
```

InMnO<sub>3</sub>, synthesis, structure, and magnetic properties, 116, 118

In<sub>x</sub>Nb<sub>3</sub>Se<sub>4</sub>, multilayer precursor synthesis, 117, 290

In<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

In<sub>2</sub>O<sub>3</sub>-ZnGa<sub>2</sub>O<sub>4</sub>-ZnO system, synthesis and single-crystal data, 116, 170  $In_2O_3(ZnO)_m$  (m = 3.4.5), in  $In_2O_3-ZnGa_2O_4-ZnO$  system, 116, 170 InPO<sub>4</sub>-1, synthesis and characterization, 117, 373 In<sub>1/2</sub>Sb<sup>Y</sup><sub>2/3</sub>(PO<sub>4</sub>)<sub>3</sub>, preparation and crystal structure, 118, 104 InVO<sub>4</sub>-I, metastable form, crystal structure, 118, 93 NiAs-Ni<sub>2</sub>In, intermetallic phases, superstructures in, analysis, 118, 313  $Pb_{1-x}In_xTe (x = 0.56)$ , oxidation states, **116**, 33  $\alpha$ -MZr<sub>3</sub>F<sub>15</sub> series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), cationic distribution, 118, 389 Infrared spectroscopy, see also Fourier-transform infrared spectroscopy Al-O-R-O-Al gels, 119, 319 Ca<sub>10-x-y</sub>Cd<sub>x</sub>Pb<sub>y</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> solid solutions, 116, 8  $(CH_3)_3NCH_2COO \cdot (COOH)_2 \cdot H_2O$ , 114, 129 Na<sub>2</sub>GdOPO<sub>4</sub>, 120, 275  $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O$ , 114, 42  $(NH_4)_6[TeMo_6O_{24}] \cdot Te(OH)_6 \cdot 7H_2O$ , 118, 341 MOCuSe (M = Bi,Gd,Dy), 118,74Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, nucleation kinetics, 116, 8  $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O} \ (M = \text{K,NH}_4), 118, 341$  $M^{\rm I}M^{\rm III}({\rm WO_4})_2$  ( $M^{\rm I}={\rm Li,Na,K};$   $M^{\rm III}={\rm Bi,Cr}$ ), vibrational properties, 117, 177 Intercalation malonate into  $[Zn_2Cr(OH)_6]X \cdot nH_2O$ , where  $X^- = 1/2 \text{ mal}^2$ , cisnate intercalation into, 119, 331  $[Mn(H_2O)]1/4(VO)3/4PO_4 \cdot 2H_2O, 116, 400$ Intercalation compounds Mn<sub>x</sub>TaS<sub>2</sub>, physical properties and homogeneity range, 114, 1 Intergrowths  $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$  of 2201 and 0201 structure, 118, 227 **Iodine** BiTeI, crystal structure, determination by powder X-ray diffraction, 114, 379 CdI<sub>2</sub>, solid state reactions with 8-hydroxyguinoline, 117, 416 CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, conducting perovskite, transport, optical, and magnetic properties, 114, 159  $Li_{1-x}H_xIO_3$ , protons, localization by single-crystal neutron diffraction, 115, 309 Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>I, high-temperature single crystal X-ray diffraction, 120, 60 Na<sub>4</sub>K[Cu(HIO<sub>6</sub>)<sub>2</sub>] · 12H<sub>2</sub>O, crystal structure, electronic spectra, and XPS, 115, 208 YbI<sub>2</sub> · H<sub>2</sub>O, crystal structure, determination by X-ray powder diffraction, 114, 308  $YbI_2-AI$  (A = Na,K,Rb,Cs) phase diagrams, measurement and calculation, 114, 146 Ionic conductivity Ag<sub>3.8</sub>Sn<sub>3</sub>S<sub>8</sub>, 116, 409  $(1 - x)Ag_2SO_4-(x)CaSO_4$  (x = 0.01 - 0.20), 116, 232  $Ag_4Zr_3S_8$ , 116, 409

 $[Cr(mal)_2(H_2O)_2]^-$ , and  $1/3[Cr(mal)_3]^{3-}$  (mal = malonate), malo-Li<sub>2.88</sub>PO<sub>3.73</sub>N<sub>0.14</sub>, **115**, 313 Na<sub>2</sub>BeGeO<sub>4</sub>, 118, 62 oxide, in solid solutions  $Ln_{1-x}Sr_xCoO_{3-\delta}$  (Ln = La,Pr,Nd) solid solutions, oxide ion conduction, 120, 128 Ion migration oxygen, in  $LaBO_3$  (B = Cr,Mn,Fe,Co), 118, 125 Ion transport Na ions in Na<sub>x</sub>Cr<sub>x</sub>Ti<sub>8-x</sub>O<sub>16</sub> tunnel structure, analysis, 116, 296 BaFe<sub>12-2x</sub>Ir<sub>x</sub> $Me_x$ O<sub>19</sub> (Me = Co,Zn;  $x \sim 0.85$  and  $x \sim 0.50$ ), magnetic properties, cationic distribution in relation to, 120, 17 K<sub>x</sub>IrO<sub>2</sub>, structural study, 118, 372  $La_2MIrO_6$  (M = Mg,Co,Ni,Zn), structure and magnetic properties, 116, 199

 $Sr_2MIrO_6$  (M = Ca,Mg), preparation and stabilization by high oxygen pressure, 115, 447  $Sr_3MIrO_6$  (M = Ni,Cu,Zn), structure and magnetic properties, 117, 300 Iron  $BaFe_{12-2x}Co_xTi_xO_{19}$ crystallite size and shape, determination by X-ray line broadening analysis, **114,** 534 samples with composition range 0 < x < 1, synthesis for magnetic recording, 115, 347  $Ba_2FeM'F_7Cl$  ( $M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$ ), synthesis, magnetic behavior, and structural study, 115, 98 Ba<sub>2</sub>Fe<sub>2</sub>F<sub>7</sub>Cl, synthesis, magnetic behavior, and structural study, 115, 98 BaFe<sub>12-2x</sub>Ir<sub>x</sub> $Me_xO_{19}$  ( $Me = Co_1Zn$ ;  $x \sim 0.85$  and  $x \sim 0.50$ ), magnetic properties, cationic distribution in relation to, 120, 17 BaFe<sub>12</sub>O<sub>19</sub>, FT-IR skeletal powder spectra, 117, 8 Ba<sub>2</sub>Fe<sub>2</sub>Ti<sub>4</sub>O<sub>13</sub>, preparation, crystal structure, dielectric properties, and magnetic behavior, 120, 121 [Ba<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>][Fe(CN)<sub>5</sub>NO]<sub>2</sub>3H<sub>2</sub>O], hydrogen-bonding system, **114**, 102  $Bi_{13}Ba_2Fe_{13}O_{66}$ , from 2201–0201 intergrowth  $Bi_2Sr_4Fe_2O_{10}$ , 118, 357 Bi<sub>2</sub>Fe<sub>4-x</sub>Al<sub>x</sub>O<sub>9</sub>, structural and magnetic studies, 114, 199  $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$ , with intergrowths of 2201 and 0201 structure, synthesis, 118, 227 Bi<sub>2</sub>Sr<sub>4</sub>Fe<sub>2</sub>O<sub>10</sub>, 2201–0201 intergrowth, Bi<sub>13</sub>Ba<sub>2</sub>Fe<sub>13</sub>O<sub>66</sub> from, synthesis, 118, 357 CaFeTi<sub>2</sub>O<sub>6</sub>, high-pressure synthesis and crystal structure, 114, 277  $Co_x Cu_{1-x} Fe_2 O_4$  ( $0 \le x < 0.3$ ), thermal behavior and magnetic properties, erratum, 117, 64; 117, 433 (Cr<sub>1-x</sub>Fe<sub>x</sub>)<sub>3</sub>Te<sub>4</sub>, magnetic properties, **120**, 49 doped Zn<sub>2</sub>SiO<sub>4</sub> single crystals, luminescence, 117, 16 Fe-Mo-O catalysts, reduction behavior, analysis by TPR with in situ Mössbauer spectroscopy and X-ray diffraction, 117, 127 Fe<sub>1-x</sub>O, defect distributions in, paracrystalline descriptions, 117, 398 α-,β-, and γ-Fe<sub>2</sub>WO<sub>6</sub> phases, magnetic and EPR studies at low temperatures, 120, 216 KeFeS2, tetrahedral FeS5-unit containing, X-ray absorption spectra, **119.** 380 LaCo<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub>, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, 118, 117 LaFeO<sub>3</sub>, oxygen ion migration, 118, 125  $La_{0.2}Sr_{0.8}Cu_{0.4}Fe_{0.6}O_{3-\gamma}$ , synthesis, 119, 260 LaSrFeO<sub>4</sub>, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456  $\text{Li}_{0.5}(\text{FeCr})_x\text{Ga}_{2.5-2x}\text{O}_4$  and  $\text{Li}_{0.5}\text{Fe}_x\text{Ga}_{2.5-x}\text{O}_4$ , tetrahedral  $3d^5$  and  $3d^5$ or  $3d^3$  octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, 120, 244 Lu<sub>2</sub>Fe<sub>2</sub>Si<sub>2</sub>C, preparation, structure refinement, and properties, 114, 66 II-Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, structural relation to α-Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub> and Na<sub>7</sub> Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub> sodium ion conductors, 118, 33 Na<sub>7</sub>Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub>, crystal structure: structural relation to II-Na<sub>3</sub>  $Fe_2(AsO_4)_3$ , 118, 33 Na<sub>5</sub>FeS<sub>4</sub>, tetrahedral FeS<sup>5</sup>-unit containing, X-ray absorption spectra, 119, 380 **114,** 265

Nd<sub>1-x</sub>Ca<sub>x</sub>FeO<sub>3-y</sub>, nonstoichiometry and physical properties, analysis,  $(NH_4)_3FeF_6$ ,  $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$  with related structure, powder X-ray and neutron diffraction analysis, 115, 197 Ni-Al-Fe, synthesis and characterization, synthesis and characterization. 118, 285

Ni<sub>0.39</sub>Fe<sub>2.61</sub>O<sub>4-8</sub>, in analysis of CO<sub>2</sub> decomposition to carbon, 120, 64 ordered substitution for Cu in tetragonal perovskite La<sub>6.4</sub>Sr<sub>1.6</sub>Cu<sub>8</sub>O<sub>20</sub>, 115, 469

PbFe<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>, crystal structure, **118**, 202 (Sr[Fe(CN)<sub>5</sub>NO] · 4H<sub>2</sub>O), crystal structure, determination by X-ray diffraction, 120, 1

substituted  $\gamma$ -nickel oxyhydroxides, iron oxidation state in, analysis, 114, 6

ThFe<sub>5</sub>P<sub>3</sub>, crystal structure, 117, 80

Th<sub>4</sub>Fe<sub>17</sub>P<sub>10</sub>O<sub>1-x</sub>, crystal structure, 117, 80

 $TIV_{5-y}Fe_yS_8$  (y = 0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, **119**, 147

 $Tm_2Fe_2Si_2C$ , preparation, structure refinement, and properties, **114**, 66  $U_2Fe_{17-x}M_xC_y$  (M=Al,Si, and Ge), magnetic properties, **115**, 13

YBaCoCu<sub>1-x</sub>Fe<sub>x</sub>O<sub>5</sub>, magnetic behavior, 115, 514

YBaCuFeO<sub>5</sub>, crystal and magnetic structure, 114, 24

YCa<sub>2</sub>SbFe<sub>4</sub>O<sub>12</sub>, magnetic ordering, 115, 435

Isokinetic relationships

in thermal decomposition of solids, analysis by isoconversional methods for analysis, 114, 392

# K

### Kinetics

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> synthesis, 116, 314

and dissolution mechanism, quartz in concentrated basic media (NaOH,KOH,LiOH), effect of solvents, 118, 254

MoO<sub>3</sub> reduction, 118, 84

Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, nucleation, analysis by X-ray and IR, 116, 8

#### L

### Lactose

mediated synthesis of  $\beta$ -Co(OH)<sub>2</sub>, 114, 550

#### Lanthanum

BaLaCoRuO<sub>6</sub>, structural and electronic properties, 114, 174

BiLa<sub>2</sub>O<sub>4.5</sub>, average structure and superstructure, X-ray powder and electron diffraction studies, 116, 72

Bi<sub>3</sub>La<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68

(Ca<sub>0.9</sub>La<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature thermoelectric performance, **120**, 105

Cs<sub>3</sub>LaCl<sub>6</sub> · 3H<sub>2</sub>O, thermal dehydration and crystal structure, 116, 329

Hg<sub>0.4</sub>Ce<sub>0.5</sub>Cu<sub>0.1</sub>Sr<sub>2-x</sub>La<sub>r</sub>CuO<sub>4+δ</sub>, synthesis and characterization, **116**, 347 KMgLa(PO<sub>4</sub>)<sub>2</sub> doped with Eu, optical and structural investigation, **114**, 282

LaAgSb<sub>2</sub>

with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441

 $LaT_2Al_{20}$  (T = Ti,Mo,W), with  $CeCr_2Al_{20}$ -type structure, 114, 337

La<sub>4</sub>BaCu<sub>5</sub>O<sub>12</sub>, insulating, prepared by reduction of metallic La<sub>4</sub>Ba Cu<sub>5</sub>O<sub>13.1</sub>, analysis, 114, 95

La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Sn<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80

 $La_2Ba_2Cu_2Ti_2O_{11}$ , high-temperature transport and defect studies, 119, 80

La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-6</sub>, synthesis, structure, and superconductivity, 119,

 $La_{1-x}Ca_xCrO_{3-\delta}$ , chemical diffusion, 115, 152

La<sub>2-x</sub>Ce<sub>x</sub>CuO<sub>4</sub>, oxygen variations, effect of internal stress, analysis by thermogravimetry, **114**, 491

LaCo<sub>1-1</sub>Cr<sub>2</sub>O<sub>3</sub>, reduction and reoxidation properties, 119, 271

LaCo<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-5</sub>, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, **118**, 117

LaCoO<sub>3</sub>, magnetic and transport properties, 116, 224

LaCoRuO<sub>6</sub>, structural and electronic properties, 114, 174

LaCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

La<sub>5</sub>Cu<sub>5</sub>O<sub>13.35</sub>, crystal structure, determination by high-resolution synchrotron X-ray diffraction, 118, 170

La<sub>2</sub>CuO<sub>4</sub>-Nd<sub>2</sub>CuO<sub>4</sub>, superconductivity, after treatment under oxidizing conditions, 115, 540 La<sub>2</sub>MIrO<sub>6</sub> (M = Mg,Co,Ni,Zn), structure and magnetic properties, 116, 199

La<sub>0.5</sub>Li<sub>0.5</sub>TiO<sub>3</sub>, microstructural study, 118, 78

LaMn<sub>11</sub>C<sub>2-x</sub>, preparation, structure refinement, and properties, **114**, 66 La<sub>1-x</sub>MnO<sub>3-6</sub>, self-doped thin films, giant magnetoresistance, **117**, 420 La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub>, giant magnetoresistance

in bulk samples with A = Sr or Ca, letter to editor, 114, 297

in samples with  $A={\rm Ca,Sr,Ba,Pb}$ , effect of internal pressure and analysis of related properties, letter to editor, 120, 204

LaMnO<sub>3</sub>

crystal structure at room temperature and at 1273 K under  $N_2$ , 119, 191

electrochemical synthesis and ferromagnetism, 114, 294

LaMnO<sub>3+8</sub>

perovskite-type solid solutions, structural behavior, 114, 516 powder annealed in air, surface characterization, 119, 164

synthesized with poly(acrylic acid), surface characterization, 116, 343

LaMo<sub>8-x</sub>O<sub>14</sub> (x = 0 and 0.3), containing isolated Mo<sub>8</sub> clusters, electrical and magnetic properties, 117, 261

 $La_xMo_6S_8$ , amorphous precursors for low-temperature preparation, 117, 269

LaNbO<sub>4</sub>, relationship between covalence and displacive phase transition temperature, 116, 28

La<sub>3</sub>NbO<sub>7</sub>, structural analysis, 116, 103

 $(La_{1-x}Nd_x)CrO_3$  (0  $\le x \le 1.0$ ), electrical properties and crystal structure, relationship, 114, 236

 $\text{La}_{1-x}A_x\text{NiO}_3$  (A = Sr,Th;  $0 \le x \le 0.1$ ), hole and electron doping, 116, 146

LaNiO<sub>3</sub>, preparation by sol-gel process, 116, 157

La<sub>4</sub>Ni<sub>3</sub>O<sub>10-δ</sub>, synthesis, structure, and properties, 117, 236

 $LaBO_3$  (B = Cr,Mn,Fe,Co), oxygen ion migration, 118, 125  $La_2O_3$ 

cation array structure, 119, 131

monoclinic, identity with La<sub>9,33</sub>(SiO<sub>4</sub>)<sub>6</sub>, 120, 38

La<sub>2</sub>O<sub>2</sub>CN<sub>2</sub>, synthesis and crystal structure, 114, 592

La<sub>2</sub>O<sub>3</sub>-Mn<sub>2</sub>O<sub>3</sub>, phase diagram, 114, 516

LaPd<sub>3</sub>As<sub>2</sub> arsenides, preparation, 115, 37

LaPd<sub>2</sub>O<sub>4</sub>, synthesis, 114, 206

La<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203

α-LaS<sub>2</sub>, β-LaS<sub>2</sub>, and LaSe<sub>2</sub>, synthesis by moderate temperature solidstate metathesis, 117, 318

La<sub>9,33</sub>(SiO<sub>4</sub>)<sub>6</sub>, identity with monoclinic La<sub>2</sub>O<sub>3</sub>, **120**, 38

La<sub>1-x</sub>Sr<sub>x</sub>CoO<sub>3-6</sub>

magnetic and transport properties in samples with  $0 < x \le 0.50$ , 118, 323

solid solutions, oxide ion conduction, 120, 128

 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-v}$  (M = Co,Fe), synthesis, 119, 260

La<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>3</sub>, perovskite lattice, mixed valence Cu(III)/Cu(IV) in, stabilization under high oxygen pressure, **114**, 88

La<sub>6.4</sub>Sr<sub>1.6</sub>Cu<sub>8</sub>O<sub>20</sub>, ordered substitution of iron for copper, 115, 469

 $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta},$  oxygen content and structure relationship, 115, 490

LaSrFeO<sub>4</sub>, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456

LaSrGa<sub>1-x</sub>Ni<sub>x</sub>O<sub>4-δ</sub>, mixed valent oxide ceramic, superconducting properties, **116**, 355

 $La_{0.8}Sr_{0.2}MnO_3$ 

La/Sr vacancy defects, imaging by HREM, 114, 211

ordered La(Sr)-deficient nonstoichiometry in, analysis by HRTEM, 120, 175

La<sub>1-x</sub>Sr<sub>1+x</sub>NiO<sub>4-δ</sub>, mixed valent oxide ceramic, superconducting properties, **116**, 355

 $MLaTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274

 $M_2$ LaTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, **120**, 43

La<sub>1.2</sub>Tb<sub>0.8</sub>CuO<sub>4+δ</sub>, with T\* structure, conducting properties and structure, 115, 332

LaTe<sub>3</sub>, synthesis by moderate temperature solid-state metathesis, 117, 318

La<sub>4</sub>Ti<sub>3</sub>S<sub>4</sub>O<sub>8</sub>, synthesis and characterization, 114, 406

La<sub>6</sub>Ti<sub>2</sub>S<sub>8</sub>O<sub>5</sub>, synthesis and characterization, 114, 406

La<sub>20</sub>Ti<sub>11</sub>S<sub>44</sub>O<sub>6</sub>, preparation and crystal structure determination, 120, 164

La<sub>x</sub>W<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, 117, 269

Na<sub>3</sub>La<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>F:Eu<sup>3+</sup>, optical properties, correlation to crystallographic structure, **116**, 286

Sr<sub>1-x</sub>La<sub>x</sub>TiO<sub>3+0.5x</sub>, layer structure, determination by high-resolution electron microscopy, **117**, 88

 $Sr_3La_2Ti_2O_{10}$ , preparation and characterization, 119, 412 Laser irradiation

effect on properties of transition metal oxides, letter to editor, 118, 417 Lattice dynamics

actice dynamics  $AGa_2X_4$  (A = Cd,Hg; X = S,Se), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, **114**, 442

spinel-type  $A\operatorname{Cr}_2 X_4$  ( $A = \operatorname{Cd}, \operatorname{Co}, \operatorname{Hg}, \operatorname{Zn}; X = \operatorname{S}, \operatorname{Se}$ ), 118, 43

Lead

(Ba<sub>1-x</sub>Sr<sub>x</sub>)(Sr<sub>0.67</sub>Bi<sub>0.33</sub>)(Pb<sub>1-y</sub>Bi<sub>y</sub>)O<sub>6-δ</sub>, with (NH)<sub>4</sub>FeF<sub>6</sub> structure type, powder X-ray and neutron diffraction analysis, **115**, 197

Bi<sub>1.8</sub>Pb<sub>0.4</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10+δ</sub>, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120

Ca<sub>10-x-y</sub>Cd<sub>x</sub>Pb<sub>y</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, solid solutions, analysis by X-ray and IR spectroscopy, **116**, 8

-calcium, hydroxyapatite, cation effects in oxidative coupling of methane, 114, 138

(Ca<sub>0.9</sub>Pb<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature thermoelectric performance, 120, 105

 $(Hg_{1-x}Pb_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$ , synthesis and characterization, **115**, 525  $PbCo_3(P_2O_7)_2$ , crystal structure, **118**, 202

Pb<sub>2</sub>Cu(II)<sub>7</sub>(AsO<sub>4</sub>)<sub>6</sub> and Pb<sub>2</sub>Cu(I)<sub>2</sub>Cu(II)<sub>6</sub>(AsO<sub>4</sub>)<sub>6</sub>, topologically related crystal structures, **114**, 413

PbFe<sub>3</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>, crystal structure, 118, 202

PbF<sub>2</sub>/GeO<sub>2</sub>/WO<sub>3</sub>, glass doped with Tm<sup>3+</sup> and Tm<sup>3+</sup>/Tb<sup>3+</sup>, blue upconversion emission, **115**, 71

 $Pb_{1-x}In_xTe$  (x = 0.56), oxidation states, 116, 33

 $Ln_{1-x}$ Pb<sub>x</sub>MnO<sub>3</sub> (Ln = rare earths), magnetoresistance and related properties, effect of internal pressure, letter to editor, **120**, 204

 $Pb_xMo_5S_8$ , amorphous precursors for low-temperature preparation, 117, 269

 $\alpha$ -PbO, electronic lone pair localization and electrostatic energy calculations, **114**, 459

PbO-based glasses, OH-containing, applications to MOS devices, mechanism, 120, 54

Pb<sub>3</sub>O<sub>4</sub>, electronic lone pair localization and electrostatic energy calculations, **114**, 459

PbO-ZrO<sub>2</sub>, solution derived powders, homogeneity problems in, 117, 343

Pb<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, phase transformation, 116, 179

Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, nucleation kinetics, analysis by X-ray and IR spectroscopy, **116**, 8

 $Pb_{2-x}Ln_xRu_2O_{7-y}$  (Ln = Nd,Gd), synthesis, crystal structure, and electrical properties, **114**, 15

Pb<sub>1-x</sub>(TiO)<sub>x</sub>O, electronic lone pair localization and electrostatic energy calculations, **114**, 459

Pb<sub>3</sub>(V,P)<sub>2</sub>O<sub>8</sub>, electronic lone pair localization and electrostatic energy calculations, **114**, 459

Pb<sub>x</sub>W<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, 117, 269

Leapfrog thermodynamics

Sm-Co systems, binary magnetic phases competing for stability, leapfrog thermodynamics, 116, 92 Lithium

Ba<sub>4</sub>LiCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, 119, 359

Co-Li<sub>2</sub>CO<sub>3</sub>, phase composition, microstructure, and sintering, *erratum*, **116**, 15; **117**, 433

La<sub>0.5</sub>Li<sub>0.5</sub>TiO<sub>3</sub>, microstructural study, 118, 78

Li, insertion characteristics in CuNb<sub>2</sub>O<sub>6</sub>, 118, 193

 $A \text{Li}_2 X_4$  (A = Mg,Mn,Zn; X = Cl,Br), nonceramic preparation techniques, 117, 34

Li<sub>3</sub>AsO<sub>4</sub>, guest ion vibrational behavior, 115, 83

Li<sub>2</sub>Ca<sub>2</sub>Si<sub>5</sub>O<sub>13</sub>, crystal structure determination, **114**, 512

LiCoO<sub>2</sub>, synthesis and thermal stability, 117, 1

 $LiCuO_2$ , symmetry, analysis by X-ray and neutron diffraction measurements, 114, 590

Li<sub>0.5</sub>(FeCr)<sub>x</sub>Ga<sub>2.5-2x</sub>O<sub>4</sub> and Li<sub>0.5</sub>Fe<sub>x</sub>Ga<sub>2.5-x</sub>O<sub>4</sub>, tetrahedral  $3d^5$  and  $3d^5$  or  $3d^3$  octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, **120**, 244

LiF-ZrF<sub>4</sub> phase diagram, reanalysis with Li<sub>4</sub>ZrF<sub>8</sub> and Li<sub>3</sub>Zr<sub>4</sub>F<sub>19</sub> crystal structures, **120**, 187

 $\text{Li}_{1-x}H_x\text{IO}_3$ , protons, localization by single-crystal neutron diffraction, 115, 309

Li(H<sub>2</sub>O)<sub>4</sub>B(OH)<sub>4</sub> · 2H<sub>2</sub>O, crystal structure and dehydration process, 115, 549

LiMn<sub>2</sub>O<sub>4</sub>, and Li<sub>1-x</sub>Mn<sub>2</sub>O<sub>4</sub>, as 4-V Li-cell cathodes, differences in electrochemical behavior, letter to editor, **119**, 216

Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub>, preparation and crystal structure refinement by Rietveld method. 115, 420

LiMoOP<sub>2</sub>O<sub>7</sub>, synthesis and structure determination, 120, 260

 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$  (0.23  $\leq x + y \leq$  0.37), bronzes obtained from sol-gel process, **118**, 10

LiNbO<sub>3</sub>, MgO-doped, defect structure model, 118, 148

LiNb(OH)OPO<sub>4</sub>, structural analysis by XRD and EXAFS, 114, 317

 $LiAO_3$  (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28

LiOH, concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254

Li<sub>2.88</sub>PO<sub>3.73</sub>N<sub>0.14</sub>, with γ-Li<sub>3</sub>PO<sub>4</sub> structure, synthesis, crystal structure, and ionic conductivity, **115**, 313

LiTaO<sub>3</sub>, impedance spectroscopy, 116, 185

Li<sub>0.8</sub>VO<sub>2</sub> single crystals, superstructure analysis, 114, 184

 $LiM^{III}(WO_4)_2$  ( $M^{III} = Bi,Cr$ ), vibrational properties, 117, 177

 $\delta_l$ -LiZnPO<sub>4</sub>, preparation, structure determination, and thermal transformation, 117, 39

LiZnPO<sub>4</sub>, structure determination by ab initio methods, 114, 249

LiZnPO<sub>4</sub> · H<sub>2</sub>O, light-atom positions in, location by powder neutron diffraction, 114, 249

Li<sub>3</sub>Zr<sub>4</sub>F<sub>19</sub>, crystal structure and reanalysis of LiF–ZrF<sub>4</sub> phase diagram, **120**, 187

Li<sub>4</sub>ZrF<sub>8</sub>, crystal structure and reanalysis of LiF-ZrF<sub>4</sub> phase diagram, 120, 187

Lithium cells

lamellar MnO2 synthesis and characterization for, 120, 70

Luminescence

Ba<sub>2</sub>TiO<sub>4</sub>, with titanate tetrahedra, 118, 337

Fe-doped with willemite single crystals, 117, 16

Lutetium

 $Ba_{5-y}Sr_yLu_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ , structural study, 118, 180

Bi<sub>3</sub>Lu<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68

Lu<sub>6</sub> $T_4$ Al<sub>43</sub> (T = Ti,V,Nb,Ta), with Ho<sub>6</sub>Mo<sub>4</sub>Al<sub>43</sub>-type structure, preparation, **116**, 131

Lu<sub>2</sub>Fe<sub>2</sub>Si<sub>2</sub>C, preparation, structure refinement, and properties, 114, 66

Lu<sub>2</sub>Ba<sub>2</sub>CuPtO<sub>8</sub>, synthesis and characterization, **120**, 316 LuCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, **115**, 305

LuNbO<sub>4</sub>, relationship between covalence and displacive phase transition temperature, 116, 28

Lu<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

 $Ln_2MCo_2O_7$  (Ln = Sm,Gd; M = Sr,Ba), 114, 286

 $(Cr_{1-x}Fe_x)_3Te_4$ , 120, 49

```
Lu<sub>3</sub>O<sub>2</sub>F<sub>5</sub>, synthesis and crystal structure, 119, 125
                                                                                                         Cr<sub>2</sub>Sn<sub>3</sub>Se<sub>7</sub>, 115, 165
   MLuTa_6Br_{18} (M = K,Rb,Cs), crystal structure, 118, 274
                                                                                                         CuNd<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>, 120, 254
   M_2LuTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal struc-
                                                                                                         InMnO<sub>3</sub>, 116, 118
         ture, 120, 43
                                                                                                         LaCoO<sub>3</sub>, 116, 224
   M'-LuTaO<sub>4</sub>, synthesis and characterization, letter to editor, 118, 419
                                                                                                         La_2MIrO_6 (M = Mg,Co,Ni,Zn), 116, 199
  α-LuZr<sub>3</sub>F<sub>15</sub> series, cationic distribution, 118, 389
                                                                                                         LaMo_{8-x}O_{14} (x = 0 and 0.3) containing isolated Mo<sub>8</sub> clusters, 117, 261
                                                                                                         La_{1-x}Sr_xCoO_{3-\delta} (0 < x \le 0.50), 118, 323
                                               М
                                                                                                         Lu<sub>2</sub>Fe<sub>2</sub>Si<sub>2</sub>C, 114, 66
                                                                                                         (Mn_xZn_{1-x})(OH)(NO_3)H_2O (x = 0.53,1.00), 118, 28
Magnesium
                                                                                                         NaM_x^{IV}(Ti,Zr)_{2-x}(PO_4)_3 (M = Nb,Mo; 0 \le x \le 1), 114, 224
   CaMg2Al16O27
                                                                                                         Nd_{1-x}A_xTiO_3 (A = Ca,Sr,Ba; 0 \le x \le 1), 114, 164
     phase relationships in CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, 120, 358
                                                                                                         (Ni_1-xMg_x)_6MnO_8, 118, 112
      structure refinement, 120, 364
                                                                                                          Ln_4Ni_3O_{10-\delta} (Ln = La,Pr,Nd), 117, 236
  Ca<sub>2</sub>Mg<sub>2</sub>Al<sub>28</sub>O<sub>46</sub>
                                                                                                         MP_2O_7 (M = Mo,W), 115, 146
     phase relationships in CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, 120, 358
                                                                                                         Sr<sub>v</sub>Ba<sub>1-v</sub>PrO<sub>3</sub>, 119, 405
     structure refinement, 120, 364
                                                                                                         Sr_3MIrO_6 (M = Ni,Cu,Zn), 117, 300
  CaO-Al<sub>2</sub>O<sub>3</sub>-MgO system, Al-rich part, phase relationships, 120, 358
                                                                                                         Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>, 116, 141
  KMgLa(PO<sub>4</sub>)<sub>2</sub> doped with Eu, optical and structural investigation,
                                                                                                         Sr<sub>3</sub>V<sub>2</sub>O<sub>6.99</sub>, 118, 292
         114, 282
                                                                                                         TiZn<sub>16</sub>, 118, 219
  La<sub>2</sub>MgIrO<sub>6</sub>, structure and magnetic properties, 116, 199
                                                                                                         Ti<sub>3</sub>Zn<sub>22</sub>, 118, 219
  MgB_2X_4 (B = Li,Na;X = Cl,Br), nonceramic preparation techniques,
                                                                                                         TlV_{5-y}Fe_yS_8 (y = 0.5-1.5), 119, 147
         117, 34
                                                                                                         Tm2Fe2Si2C, 114, 66
  MgHOP<sub>4</sub> · 0.78H<sub>2</sub>O, ambient pressure and temperature synthesis,
                                                                                                          U, Np, and Pu NaCl-type compounds, 115, 66
         114, 598
                                                                                                          U<sub>3</sub>Co<sub>4</sub>Ge<sub>7</sub>, 115, 247
  (Mg,Na,Al)<sub>2</sub>(Al,Zn)<sub>3</sub>, crystal structure, 115, 270
                                                                                                          U_2 Fe_{17-x} M_x C_y (M = Al,Si, and Ge), 115, 13
  MgO, crystalline structure, preparation by sol-gel technique with dif-
                                                                                                         U<sub>3</sub>Ni<sub>3,34</sub>P<sub>6</sub>, 116, 307
         ferent hydrolysis catalysts, 115, 411
                                                                                                          A_2V_4O_9, (A = Rb,Cs), 115, 174
  Mg(OH)2-SiO2, mixtures, surface changes in basicity and species, role
                                                                                                      Magnetic recording
         of mechanical activation, 115, 390
                                                                                                         synthesis of BaFe<sub>12-2x</sub>Co<sub>x</sub>Ti<sub>x</sub>O<sub>19</sub> (0 < x < 1) for, 115, 347
  MgO-MgCl<sub>2</sub>-H<sub>2</sub>O, chemical reactions, analysis by time-resolved syn-
                                                                                                      Magnetic structure
         chrotron X-ray powder diffraction, 114, 556
                                                                                                          YBaCuFeO<sub>5</sub>, 114, 24
  NaCa<sub>2</sub>Mg<sub>2</sub><sup>2+</sup> (AsO<sub>4</sub>)<sub>3</sub>, structure, 118, 267
                                                                                                      Magnetic susceptibility
  (Ni<sub>1-x</sub>Mg<sub>x</sub>)<sub>6</sub>MnO<sub>8</sub>, crystal structure and magnetic properties, 118, 112
                                                                                                         BaCuO<sub>2+x</sub>, 119, 50
  Sr<sub>2</sub>MgIrO<sub>6</sub>, preparation and stabilization by high oxygen pressure,
                                                                                                         Bi<sub>2</sub>Fe<sub>4-x</sub>Al<sub>x</sub>O<sub>9</sub>, 114, 199
         115, 447
                                                                                                         Co<sub>2</sub>Cd<sub>1-2</sub>In<sub>2</sub>S<sub>4</sub> spinel solid solutions, 114, 524
Magnetic behavior
                                                                                                         Cu<sub>2</sub>(OH)<sub>3</sub>NO<sub>3</sub>, 116, 1
  Ba_2M_2F_7Cl and Ba_2MM'F_7Cl (M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+}),
                                                                                                          ACu_7S_4 (A = Tl,K,Rb), 115, 379
         115, 98
                                                                                                         \alpha-,\beta-, and \gamma-Fe<sub>2</sub>WO<sub>6</sub> phases, analysis at low temperatures, 120, 216
  YBaCoCu<sub>1-x</sub>Fe<sub>x</sub>O<sub>5</sub>, 115, 514
                                                                                                         Mn<sub>3</sub>Al<sub>2-x</sub>Cr<sub>x</sub>Ge<sub>3</sub>O<sub>12</sub>, 118, 261
Magnetic ordering
                                                                                                         Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta} \ (0 \le \delta \le 1), 117, 48
  CuCrP<sub>2</sub>S<sub>6</sub>, 116, 208
                                                                                                         Mn<sub>2</sub>OBO<sub>3</sub>, 114, 311
  long-range, CuSb<sub>2</sub>O<sub>6</sub>, confirmation, 118, 199
                                                                                                         Mn<sub>x</sub>TaS<sub>2</sub>, intercalation compounds, 114, 1
   YCa<sub>2</sub>SbFe<sub>4</sub>O<sub>12</sub>, 115, 435
                                                                                                         Nb<sub>3</sub>SBr<sub>7</sub>, 120, 311
Magnetic phases
                                                                                                         (NH<sub>4</sub>)<sub>2</sub>V<sub>3</sub>O<sub>8</sub> fresnoite-type vanadium oxides, 114, 499
  binary, Sm-Co systems, competing for stability, leapfrog dynamics,
                                                                                                         rare-earth (Pr,Nd,Eu) mixed oxides, effect of crystal field, 114, 52
         116, 92
                                                                                                      Magnetoresistance, see also Giant magnetoresistance
Magnetic properties
                                                                                                          La_{1-x}A_xMnO_3 (A = Sr or Ca), letter to editor, 114, 297
  REAgSb_2 (RE = Y,La-Nd,Sm,Gd-Tm), 115, 441
                                                                                                      Manganese
  AAs_2O_6 (A = Mn,Co,Ni), 118, 402
                                                                                                         (AgIn)_{2(1-z)}(MnIn_2)_zTe_4, alloys, T(z) diagram and optical energy gap
   M_2As_2O_7 (M = Ni,Co,Mn), 115, 229
                                                                                                                values, 114, 539
   BaCe<sub>y</sub>Pr<sub>1-y</sub>O<sub>3</sub>, 119, 405
                                                                                                          Ag<sub>2</sub>MnGeTe<sub>4</sub>, crystal symmetry, 115, 192
  Ba_3Cr_2MO_9 (M = Mo, W), 120, 238
                                                                                                          AgMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 117, 206
  BaCu<sub>2</sub>S<sub>2</sub>, 117, 73
                                                                                                          Ba_2MnM'F_7Cl\ (M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}), synthesis, magnetic
  α-BaCu<sub>4</sub>S<sub>3</sub>, 117, 73
                                                                                                                behavior, and structural study, 115, 98
  BaFe<sub>12-2x</sub>Ir<sub>x</sub>Me_xO<sub>19</sub> (Me = \text{Co,Zn}; x \sim 0.85 and x \sim 0.50), 120, 17
                                                                                                          Ba<sub>2</sub>Mn<sub>2</sub>F<sub>2</sub>Cl, synthesis, magnetic behavior, and structural study, 115, 98
   Ba<sub>2</sub>Fe<sub>2</sub>Ti<sub>4</sub>O<sub>13</sub>, 120, 121
                                                                                                          BaMnO<sub>3-v</sub> (0.22 \leq y \leq 0.40), ordering and defects, 117, 21
   BaPrO<sub>3</sub>, 119, 405
                                                                                                         (Ca_{0.9}M_{0.1})MnO_3 (M = Y,La,Ce,Sm,In,Sn,Sb,Pb,Bi), electrical trans-
   BaTa<sub>2</sub>S<sub>5</sub>, 116, 392
   BaVO(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) · H<sub>2</sub>O, 118, 241
                                                                                                                port properties and high-temperature thermoelectric performance,
                                                                                                                120, 105
   Ca<sub>3</sub>CoN<sub>3</sub>, 119, 161
                                                                                                         Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub> intergrowth between 123 and 0201 structures, 115, 1
   CeVO<sub>3</sub>, 119, 24
                                                                                                         InMnO<sub>3</sub>, synthesis, structure, and magnetic properties, 116, 118
   CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, 114, 159
   Co_xCu_{1-x}Fe_2O_4 (0 \leq x < 0.3), erratum, 117, 64; 117, 433
                                                                                                         La_{1-x}A_xM\pi O_3 (A = Sr or Ca), bulk samples, giant magnetoresistance,
```

letter to editor, 114, 297

La<sub>1-x</sub>MnO<sub>3-δ</sub>, self-doped thin films, giant magnetoresistance, 117, 420

 $La_2O_3$ - $Mn_2O_3$ , phase diagram, 114, 516  $LaMnO_3$ 

crystal structure at room temperature and at 1273 K under  $N_2$ , 119, 191

electrochemical synthesis and ferromagnetism, 114, 294 oxygen ion migration, 118, 125

LaMnO<sub>3+δ</sub>

perovskite-type solid solutions, structural behavior, **114**, 516 powder annealed in air, surface characterization, **119**, 164 synthesized with poly(acrylic acid), surface characterization, **116**, 343 La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub>

La/Sr vacancy defects, imaging by HREM, 114, 211

ordered La(Sr)-deficient πonstoichiometry in, analysis by HRTEM, 120, 175

LiMn<sub>2</sub>O<sub>4</sub>, and Li<sub>1-x</sub>Mn<sub>2</sub>O<sub>4</sub>, as 4-V Li-cell cathodes, differences in electrochemical behavior, letter to editor, 119, 216

Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub>, preparation and crystal structure refinement by Rietveld method, 115, 420

mixed valent oxide ceramics, superconducting properties, 116, 355

 $MnB_2X_4$  (B = Li,Na;X = Cl,Br), nonceramic preparation techniques, 117, 34

 $Mn_3Al_{2-x}Cr_xGe_3O_{12}$ , X-ray absorption spectroscopic and magnetic analysis, 118, 261

Mn<sub>4</sub>As<sub>3</sub>, synthesis, crystal structure, and relation to other manganese arsenides, 119, 344

MnAs<sub>2</sub>O<sub>6</sub>, structural and magnetic properties, 118, 402

Mn<sub>2</sub>As<sub>2</sub>O<sub>7</sub>, magnetic properties and structures, 115, 229

 $Mn_3B_7O_{13}Br$ , high-temperature single crystal X-ray diffraction, 120, 60  $Mn_3B_7O_{13}I$ , high-temperature single crystal X-ray diffraction, 120, 60  $[Mn(H_2O)]1/4(VO)3/4PO_4 \cdot 2H_2O$ , synthesis, characterization, and intercalation of vanadyl phosphate with manganese, 116, 400

 $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$  (0  $\leq \delta \leq 1$ ), synthesis, structure, and magnetic susceptibility, 117, 48

 $MnO_2,$  from thermal decomposition of NaMnO\_4, synthesis and characterization, 120, 70

 $Ln_{1-x}A_x$ MnO<sub>3</sub> (Ln = rare earths; A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204

Mn<sub>2</sub>OBO<sub>3</sub>, synthesis, crystal structure, band calculations, and magnetic susceptibility, 114, 311

 $Mn_xTaS_2$ , intercalation compounds, physical properties and homogeneity range, 114, 1

 $Mn_2VO(PO_4)_2 \cdot H_2O$ , hydrothermal synthesis and structure, 115, 76  $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$  (x = 0.53,1.00), synthesis and characterization, 118, 28

NaMnO<sub>4</sub>, lamellar MnO<sub>2</sub> from, thermal decomposition synthesis and characterization for rechargeable lithium cells, **120**, 70

NaMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 115, 240

 $Nd(Cr_{1-x}Mn_x)O_3$  ( $0 \le x \le 0.6$ ), cation-anion-cation overlap and electrical properties, relationship, 118, 367

NdMnO<sub>3+y</sub>, crystal and defect structure and oxygen nonstoichiometry, 118, 53

(Ni<sub>1-x</sub>Mg<sub>x</sub>)<sub>6</sub>MnO<sub>8</sub>, crystal structure and magnetic properties, 118, 112

PrMnO<sub>3+y</sub>, crystal and defect structure, and oxygen nonstoichiometry, 118, 53

PrMnOGeO<sub>4</sub>, preparation and crystal structure, 120, 7

 $Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta},$  effects of spectacular giant magnetoresistance, 117, 424

Sr<sub>5</sub>Mn<sub>4</sub>CO<sub>3</sub>O<sub>10</sub>, synthesis and structure, 120, 279

SrMnO<sub>3-x</sub> electronic properties, 114, 242

 $Zn_{1-z}Mn_zGa_2Se_4$ , energy gap values and T(z) diagram, 115, 416 Mathematical analysis

rod packings, 114, 42

Mechanical activation

effect on basicity and species on surface of Me(OH)<sub>2</sub>-SiO<sub>2</sub> (Me = Ca,Mg,Sr) mixtures, 115, 390

Mercury

BaHgRuO<sub>5</sub>, synthesis and structure, 120, 223

 $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$  (M = Cu,Pr), synthesis and crystal structure, 114, 230

HgBiSr<sub>7</sub>Cu<sub>2</sub>SbO<sub>15</sub>, double cationic ordering, 116, 53

 $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}La_rCuO_{4+\delta}$ , synthesis and characterization, 116, 347  $HgCr_2Se_4$ , lattice dynamics, 118, 43

 $HgGa_2X_4$  (X = S,Se), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442

(Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, 114, 369

 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$ , synthesis and characterization, 115, 525

Hg<sub>1-x</sub>Tl<sub>x</sub>Sr<sub>4-y</sub>Ba<sub>y</sub>Cu<sub>2</sub>CO<sub>3</sub>O<sub>7-δ</sub>, modulated superconducting oxides, structural aspects, **120**, 332

Metal-insulator transition

EuNiO<sub>3</sub>, 120, 170

Sm<sub>1-x</sub>Nd<sub>x</sub>NiO<sub>3</sub>, **120**, 157

Metathesis

solid-state, moderate temperature, in synthesis of rare-earth polychalcogenides, 117, 318

Methane

oxidative coupling cation effects of lead-calcium hydroxyapatite, 114, 138

Microdomains

associated with defect fluorite to C-type sesquioxide transition in  $(1 - x)\text{CeO}_2 \cdot x\text{YO}_{1.5}$  and  $(1 - x)\text{ZrO}_2 \cdot x\text{RO}_{1.5}$  (R = Ho, Dv,Tb,Gd), 120, 290

Microstructure

Co-Li<sub>2</sub>CO<sub>3</sub>, erratum, 116, 15; 117, 433

fumed titanium dioxide photocatalyst, 115, 236

La<sub>0.5</sub>Li<sub>0.5</sub>TiO<sub>3</sub>, 118, 78

Mixed crystals

binary, thermodynamics in sub-quasi-chemical/Debye approximation, 115, 368

Modulation waves

in analysis of cubic stabilized zirconias, disordered structure, 115, 43 Molybdenum

Ba<sub>3</sub>Cr<sub>2</sub>MoO<sub>9</sub>, structure and magnetic properties, 120, 238

BaMo<sub>4</sub>O<sub>13</sub>·2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, **116**, 95 BaMo(PO<sub>4</sub>)<sub>2</sub>, with yavapaiite layer structure, synthesis and characterization, **116**, 364

Bi<sub>2</sub>MoO<sub>6</sub>, phase transitions, structural changes in, analysis, letter to editor, 119, 210

 $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$ , crystal structure, determination from powder data, 117, 103

Cs<sub>9</sub>Mo<sub>9</sub>Al<sub>3</sub>P<sub>11</sub>O<sub>59</sub> with tunnel structure, isolation, **114**, 451

CsMo<sub>2</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, mixed valent monophosphate with layer structure, 116, 87

Fe-Mo-O catalysts, reduction behavior, analysis by TPR with in situ Mössbauer spectroscopy and X-ray diffraction, 117, 127

GaMo<sub>4</sub>S<sub>8</sub>-type compounds, tetrahedral clusters: metal bonding analysis, **120**, 80

 $Ho_6Mo_4Al_{43}$ , related structure of  $A_6T_4Al_{43}$  (A = Y,Nd,Sm,Gd-Lu,U; T = Ti,V,Nb,Ta), 116, 131

HoSr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.54</sub>, synthesis and crystal structure, 119, 115

KMo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

KMo<sub>4</sub>O<sub>6</sub>, analysis of tetragonal forms, 117, 217

K<sub>2</sub>Mo<sub>2</sub>O<sub>10</sub> · 3H<sub>2</sub>O, crystal structure, determination by direct method/ powder diffraction package, 115, 225  $\beta$ -K<sub>2</sub>Mo<sub>2</sub>O<sub>4</sub>P<sub>2</sub>O<sub>7</sub>, tunnel structure, **114**, 481

K<sub>3</sub>(Mo)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub> with tunnel structure, 114, 61

LaMo<sub>8-x</sub>O<sub>14</sub> (x = 0 and 0.3), containing isolated Mo<sub>8</sub> clusters, electrical and magnetic properties, **117**, 261

LiMoOP<sub>2</sub>O<sub>7</sub>, synthesis and structure determination, 120, 260

Mo-Bi-O system, structural modeling, letter to editor, 119, 428

MoO<sub>3</sub>-II, soft chemical synthesis, 119, 199

MoO<sub>3</sub>, reduction, kinetics and mechanism, 118, 84

 $M_2$ MoO<sub>4</sub> ( $M = Na, NH_4, Ag$ ), hydrothermal preparation, structure, and reactivity, **117**, 323

MoP<sub>2</sub>O<sub>7</sub>, synthesis and magnetic and electrical properties, 115, 146  $M_x$ Mo<sub>6</sub>S<sub>8</sub> (M = Sn,Co,Ni,Pb,La,Ho), amorphous precursors for low-temperature preparation, 117, 269

 $AMo_2Al_{20}$  (A = La, Ce, Pr, Nd, Sm, Eu, U), with  $CeCr_2Al_{20}$ -type structure, 114. 337

Mo<sub>7.6</sub>W<sub>1.4</sub>O<sub>25</sub>, crystal structure, 119, 8

Na<sub>3</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub>, tunnel structure and synthesis, 114, 543

 $Na_{0.75}Mo_{1.17}W_{0.83}O_3(PO_4)_2$ , synthesis and crystal structure, 120, 353

NaNb<sub>x</sub><sup>IV</sup>(Ti,Zr)<sub>2-x</sub>(PO<sub>4</sub>)<sub>3</sub> ( $0 \le x \le 1$ ), crystal, magnetic, and electrical properties, **114**, 224

 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$ , synthesis and structure, 119, 176

NH<sub>4</sub>Mo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

 $(NH_4)_2Mo_3O_{10} \cdot H_2O$ , crystal structure, determination by powder diffraction, 116, 422

 $(NH_4)_6[TeMo_6O_{24}]$  ·  $Te(OH)_6$  ·  $7H_2O$ , single crystals, infrared and polarized Raman spectra, 118, 341

Slater functions, formulation by distance between subspaces, 116, 275  $M_6[\text{TeM}_{06}\text{O}_{24}] \cdot 7\text{H}_2\text{O}$  ( $M = \text{K,NH}_4$ ), single crystals, infrared and polarized Raman spectra, 118, 341

V-Mo-O-N, synthesis by temperature-programmed reaction, **116**, 205 Monochalcogenides

TiS, VS, TiSe, and VSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346

Mössbauer spectroscopy

CO<sub>2</sub> decomposition to carbon, analysis with Ni<sub>0.39</sub>Fe<sub>2.61</sub>O<sub>4-8</sub>, **120**, 64 in situ, and X-ray diffraction, TPR with, in analysis of Fe-Mo-O catalysts, **117**, 127

<sup>119</sup>Sn, in analysis of bonding in Zintl phases, 118, 397

 $TlV_{5-y}Fe_yS_8$  (y = 0.5-1.5), **119,** 147

Multipole expansions

crystal field potential,  $ReB_a^k$ -Im $B_a^k$ , parameter ratio quality, 115, 92

N

Nasicon structure

 $\operatorname{Na}_{x}^{\operatorname{IV}}(\operatorname{Ti},\operatorname{Zr})_{2-x}(\operatorname{PO}_{4})_{3}$   $(M = \operatorname{Nb},\operatorname{Mo}; 0 \le x \le 1)$ , crystal, magnetic, and electrical properties, **114**, 224

Neodymium

Bi<sub>3</sub>Nd<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, **116**, 68 Cs<sub>3</sub>NdCl<sub>6</sub> · 3H<sub>2</sub>O, thermal dehydration and crystal structure, **116**, 329 CuNd<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>, crystal structure, growth, and magnetic and spectroscopic properties, **120**, 254

 $(La_{1-x}Nd_x)CrO_3$   $(0 \le x \le 1.0)$ , electrical properties and crystal structure, relationship, **114**, 236

NdAgSb<sub>2</sub>

with HfCuSi<sub>2</sub>-type structure, preparation, **115**, 305 magnetism and crystal structure, **115**, 441

 $NdT_2Al_{20}$  ( $T = Ti_1Mo_1W$ ), with  $CeCr_2Al_{20}$ -type structure, 114, 337

 $Nd_6T_4Al_{43}(T=Ti,V,Nb,Ta)$ , with  $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131

NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-y</sub>, FT-IR skeletal study, 119, 36

Nd<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-δ</sub>, synthesis, structure, and superconductivity, 119,

Nd<sub>1-x</sub>Ca<sub>x</sub>FeO<sub>3-y</sub>, nonstoichiometry and physical properties, analysis, 114. 265

 $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$ , 120, 146

Nd2-xCexCuO4

FT-IR skeletal study, 119, 36

oxygen variations, effect of internal stress, analysis by thermogravimetry, 114, 491

 $Nd(Cr_{1-x}Mn_x)O_3$  (0  $\le x \le 0.6$ ), cation-anion-cation overlap and electrical properties, relationship, 118, 367

NdCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

Nd<sub>2</sub>CuO<sub>4</sub>-Nd<sub>2</sub>CuO<sub>4</sub>, superconductivity, after treatment under oxidizing conditions, **115**, 540

 $Nd_{1-x}A_xMnO_3$  (A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, **120**, 204

NdMnO<sub>3+y</sub>, crystal and defect structure and oxygen nonstoichiometry, 118, 53

 $Nd_{1-x}A_xNiO_3$  ( $A = Sr,Th; 0 \le x \le 0.1$ ), hole and electron doping, 116, 146

NdNiO<sub>3</sub> electrochemical synthesis and ferromagnetism, 114, 294

 $Nd_4Ni_3O_{10-\delta}$ , synthesis, structure, and properties, 117, 236

NdAO<sub>4</sub> (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28

Nd<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

Nd<sub>2</sub>O<sub>3</sub>-Pr<sub>6</sub>O<sub>11</sub>-CuO, phase relations, 115, 291

 $Nd_{1-x}Sr_xCoO_{3-\delta}$  solid solutions, oxide ion conduction, 120, 128

 $MNdTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274

NdTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274

 $M_2$ NdTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, **120**, 43

 $Nd_2(TeO_3)_3$  and  $Te_4O_{11}$ , tellurite formation, enthalpy determination, 118, 210

 $Nd_{1-x}A_xTiO_3$  ( $A = Ca,Sr,Ba; 0 \le x \le 1$ ), structure, transport, and magnetic properties, **114**, 164

 $Pb_{2-x}Nd_xRu_2O_{7-y}$ , synthesis, crystal structure, and electrical properties, 114. 15

P<sub>1</sub>Pd<sub>3</sub>As<sub>2</sub> arsenides, preparation, 115, 37

rare-earth mixed oxide, magnetic susceptibility effect of crystal field, 114, 52

Sm<sub>1-x</sub>Nd<sub>x</sub>NiO<sub>3</sub>, preparation and metal-insulator properties, **120**, 157 SrNdGa<sub>1-x</sub>Mn<sub>x</sub>O<sub>4</sub>, mixed valent oxide ceramic, superconducting properties, **116**, 355

Sr<sub>1+x</sub>Nd<sub>1-x</sub>MnO<sub>4</sub>, mixed valent oxide ceramic, superconducting properties, **116**, 355

Neptunium

NaCl-type compound, thermodynamic and magnetic properties, 115,66 Neutron diffraction, see also Powder neutron diffraction

 $(Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta}$  compounds with  $(NH)_4FeF_6$  structure type, 115, 197

 $R_2Cu_2O_5$  (R = Yb,Tm,Er,Y,Ho), 115, 324

LiCuO<sub>2</sub>, symmetry, 114, 590

Li<sub>1-x</sub>H<sub>x</sub>IO<sub>3</sub>, proton localization, 115, 309

Y<sub>2</sub>(Zr<sub>y</sub>Ti<sub>1-y</sub>)<sub>2</sub>O<sub>7</sub>, Rietveld analysis of disorder from Zr substitution, 117, 108

Nickel

AuNi<sub>2</sub>Sn<sub>4</sub>, crystal structure, 119, 142

 $Ba_2NiM'F_7Cl$  ( $M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$ ), synthesis, magnetic behavior, and structural study, **115**, 98

 $Ba_2Ni_2F_7Cl$ , synthesis, magnetic behavior, and structural study, **115**, 98  $Ca_{1-x}Sr_xNiN$  ( $0 \le x \le 0.5$ ), solid solutions, preparation, crystal structure, and properties, **115**, 353

EuNiO<sub>3</sub>, preparation, crystal structure, and metal-insulator transition,

KNiPS<sub>4</sub>, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432

La<sub>2</sub>NiIrO<sub>6</sub>, structure and magnetic properties, 116, 199

LaNiO<sub>3</sub>, preparation by sol-gel process, 116, 157

mixed valent oxide ceramics, superconducting properties, 116, 355 NaCa<sub>2</sub>Ni<sub>2</sub> (AsO<sub>4</sub>)<sub>3</sub>, structure, 118, 267

NdNiO<sub>3</sub> electrochemical synthesis and ferromagnetism, 114, 294

Ni ions, location and reducibility in HEU-type zeolites, 114, 108

Ni-Al-M (M = Cr,Fe), synthesis and characterization, 118, 285

NiAs filled structure, GdRuC2 with, 118, 158

NiAs-Ni<sub>2</sub>In, intermetallic phases, superstructures in, analysis, 118, 313

NiAs<sub>2</sub>O<sub>6</sub>, structural and magnetic properties, 118, 402

Ni<sub>2</sub>As<sub>2</sub>O<sub>7</sub>, magnetic properties and structures, 115, 229

NiCo<sub>2</sub>O<sub>4</sub>, preparation by sol-gel process, 116, 157

 $Ni_{0.39}Fe_{2.61}O_{4-\delta}$ , in analysis of  $CO_2$  decomposition to carbon, 120, 64

(Ni<sub>1-x</sub>Mg<sub>x</sub>)<sub>6</sub>MnO<sub>8</sub>, crystal structure and magnetic properties, **118**, 112 Ni<sub>x</sub>Mo<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, **117**, 269

 $R_{1-x}A_x \text{NiO}_3$  (R = La,Nd; A = Sr,Th;  $0 \le x \le 0.1$ ), hole and electron doping, **116**, 146

 $Ln_4Ni_3O_{10-\delta}$  (Ln = La,Pr,Nd), synthesis, structure, and properties, 117, 236

Ni<sub>1,282(4)</sub>Si<sub>1,284(5)</sub>P<sub>3</sub>, crystal structure, 114, 476

NiSi<sub>2</sub>P<sub>3</sub>, crystal structure, 114, 476

NiU<sub>2</sub>O<sub>6</sub>, antiferromagnetic ordering, 114, 595

 $Ni_xW_6S_8$ , amorphous precursors for low-temperature preparation, 117, 269

 $Sm_{1-x}Nd_xNiO_3$ , preparation and metal-insulator properties, **120**, 157  $Sr_3NiIrO_6$ , structure and magnetic properties, **117**, 300

SrNiN, preparation, crystal structure, and properties, 115, 353

 $U_3Ni_{3,34}P_6$ , preparation, crystal structure, and physical properties, 116, 307

y-Nickel oxyhydroxides

iron-substituted, iron oxidation state in, analysis, 114, 6

BaNb<sub>0.8</sub>S<sub>3-δ</sub>, structure and physical properties, 115, 427

BaNbS<sub>3</sub>, structure and physical properties, 115, 427

Bi<sub>2-x</sub>Nb<sub>x</sub>O<sub>3+x</sub>, solid solution, electron diffraction study, 119, 311

(BiS)<sub>1.11</sub>NbS<sub>2</sub>, layered composite crystal structure, 116, 61

(BiS)<sub>1+ $\delta$ </sub>(Nb<sub>1+ $\epsilon$ </sub>S<sub>2</sub>)n, misfit layer structures, analysis by TEM and XRD, **115**, 274

CsNbOB<sub>2</sub>O<sub>5</sub>, synthesis and characterization, 120, 74

CuNb<sub>2</sub>O<sub>6</sub>, lithium insertion characteristics, 118, 193

Cu<sub>x</sub>Zn<sub>1-x</sub>Nb<sub>2</sub>O<sub>6</sub>, structural relations, 115, 476

(Gd<sub>ε</sub>Sn<sub>1-ε</sub>S)<sub>1.16</sub>(NbS<sub>2</sub>)<sub>3</sub>, crystal structure and synthesis, 114, 435

H<sub>x</sub>Nb<sub>2</sub>O<sub>5</sub>, electrochemical investigations, 115, 260

In<sub>x</sub>Nb<sub>3</sub>Se<sub>4</sub>, multilayer precursor synthesis, 117, 290

KNB<sub>5</sub>GeO<sub>16</sub> · 2H<sub>2</sub>O, with 2D channel network, 115, 373

La<sub>3</sub>NbO<sub>7</sub>, structural analysis, 116, 103

LiNbO<sub>3</sub>

MgO-doped, defect structure model, 118, 148

relationship between covalence and displacive phase transition temperature, 116, 28

LiNb(OH)OPO<sub>4</sub>, structural analysis by XRD and EXAFS, **114**, 317 NaNb<sub>x</sub><sup>IV</sup>(Ti,Zr)<sub>2-x</sub>(PO<sub>4</sub>)<sub>3</sub> ( $0 \le x \le 1$ ), crystal, magnetic, and electrical properties, **114**, 224

 $Nb_6T_4Al_{43}$  (T = Ti, V, Nb, Ta), with  $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131

 $NbN_x$ , synthesis by pulsed laser desorption and characterization,

NbO, TT-Phase, reaction with CCl<sub>4</sub>, kinetic mechanism, 117, 379

 $RNbO_4$  (R = Y,La-Lu), relationship between covalence and displacive phase transition temperature, **116**, 28

Nb<sub>2</sub>O<sub>5</sub>, effect of laser irradiation, letter to editor, 118, 417

Nb<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> photocatalysts, surface acidity and photocatalytic activity, **115**, 187

NbP<sub>2</sub>O<sub>7</sub>h, with cubic structure, preparation, 119, 98

Nb<sub>2-x</sub>P<sub>3-y</sub>O<sub>12</sub>, preparation, composition, and structure, **116**, 335

Nb<sub>3</sub>SBr<sub>7</sub>, synthesis, crystal structure, and magnetic susceptibility, 120, 311

 $NbA_xTe_2$  (A = Si,Ge; 1/3  $\leq x \leq$  1/2), origin of short interslab Te-Te contacts in, analysis, 119, 394

Nb<sub>4</sub>W<sub>13</sub>O<sub>47</sub>, oxidation products, analysis by TEM, 120, 268

 $Nb_7W_{10}O_{47}$ , oxidation products, transmission electron microscopy analysis. 119, 420

Slater functions, formulation by distance between subspaces, **116**, 275 SrNb<sub>4</sub>O<sub>6</sub>, crystal structure, **114**, 301

 $Tl_2Nb_2O_{6+x}$  (0  $\leq x \leq 1$ ) solution, continuous cubic pyrochlore type, **114.** 575

UNb<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, 114, 337

Nitrogen

Al<sub>28</sub>O<sub>21</sub>C<sub>6</sub>N<sub>6</sub>, diamond-related compound in system Al<sub>2</sub>O<sub>3</sub>-Al<sub>4</sub>C<sub>3</sub>-AlN, identification, 120, 211

 $AI_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , synthesis and crystal structure, **120**, 197

 $[Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O], \ hydrogen-bonding \ system, \ \textbf{114,} \ 102$ 

Ba<sub>2</sub>ZnN<sub>2</sub>, synthesis and crystal structure, 119, 375

Bi<sub>3</sub>NF<sub>6</sub>, synthesis and structure, 114, 73

BN, crystalline cubic thin films, hot-filament-assisted electron beam deposition, 118, 99

Ca<sub>3</sub>CoN<sub>3</sub>, preparation, crystal structure, electrical properties, and magnetic properties, 119, 161

-carbon-boron system, properties and preparation, 114, 258

-carbon polymers, high-pressure synthesis, 117, 229

 $Ca_{1-x}Sr_xNiN$  (0  $\leq x \leq 0.5$ ) solid solutions, preparation, crystal structure, and properties, **115**, 353

(Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372

Cd<sub>2-x</sub>GeO<sub>4-x-3y</sub>N<sub>2y</sub>, preparation and characterization, 119, 304

CeK<sub>2</sub>(NO<sub>3</sub>)<sub>6</sub>, double valence change for cerium during thermal decomposition, letter to editor, **115**, 295

(CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>COO · (COOH)<sub>2</sub> · H<sub>2</sub>O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129

[n-C<sub>9</sub>H<sub>19</sub>NH<sub>3</sub>]<sub>2</sub>CuCl<sub>4</sub>, characterization by FTIR, 117, 97

 $2(C_6H_5NH_3)\cdot Mo_3O_{10}\cdot 4H_2O,$  crystal structure, determination from powder data, 117, 103

CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, transport, optical, and magnetic properties, 114, 159

 $(C_{18}H_{30}N_3)_2\cdot[Si_8O_{18}(OH)_2]\cdot41H_2O,$  X-ray diffraction and NMR analysis, 120, 231

Cu(C<sub>4</sub>H<sub>5</sub>N<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, synthesis and characterization, **117**, 333

 $Cu^{11}(1,4\text{-}C_4H_4N_2)(C_4O_4)(OH_2)_4$  , synthesis and structure determination with silica gels, 117, 256

Cu<sub>2</sub>(OH)<sub>3</sub>NO<sub>3</sub>, magnetic behavior and exchange coupling, single crystal study, **116**, 1

La<sub>2</sub>O<sub>2</sub>CN<sub>2</sub>, synthesis and crystal structure, 114, 592

 $Li_{2.88}PO_{3.73}N_{0.14}$ , with  $\gamma$ - $Li_3PO_4$  structure, synthesis, crystal structure, and ionic conductivity, **115**, 313

 $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$  ( $0 \le \delta \le 1$ ), synthesis, structure, and magnetic susceptibility, 117, 48

 $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$  (x = 0.53,1.00), synthesis and characterization, **118**, 28

 $NbN_x$ , synthesis by pulsed laser desorption and characterization, 117, 294

 $N(CH_3)_4H_2PO_4\cdot H_2O,$  FT-IR and polarized Raman spectra, **120**, 343  $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18}\cdot 2H_2O,$  structural, DSC, and IR analysis, **114**, 42

NH<sub>2</sub>HSO<sub>3</sub>, analysis by vibrational and surface enhanced Raman scattering, **116**, 217

P<sub>4</sub>ON<sub>6</sub>, crystal structure, 115, 265

 $Sn_4S_9[(C_3H_7)_4N]_2$ , preparation and structural characterization, 114, 506

115, 532

Sn<sub>4</sub>S<sub>9</sub>[(C<sub>3</sub>H<sub>7</sub>)<sub>4</sub>N] · [(CH<sub>3</sub>)<sub>3</sub>NH], preparation and structural character-Oxygen content variations in Ln<sub>2-r</sub>Ce<sub>r</sub>CuO<sub>4</sub>, effect of internal stress, analysis ization, 114, 506 (Sr[Fe(CN)<sub>5</sub>NO] · 4H<sub>2</sub>O), crystal structure, determination by X-ray by thermogravimetry, 114, 491 diffraction, 120, 1 defects SrNiN, preparation, crystal structure, and properties, 115, 353 effects on strong-metal-support interaction between Pt TiO2(rutile)(110) surface, 119, 237 Sr<sub>2</sub>ZnN<sub>2</sub>, synthesis and crystal structure, 119, 375 on SrCoO<sub>3-δ</sub>, effects on electronic states, 119, 76 Ta<sub>2</sub>N, formation by air ignition, letter to editor, 119, 207 deficiency in  $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta}$ , relationship to structure, 115, 490 TaThN<sub>3</sub>, synthesis, 120, 378 at high pressure  $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}]$ , synthesis, crystal structure, and strucperovskite lattice of La<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>3</sub> under, mixed valence Cu(III)/ tural correlations with V<sub>2</sub>O<sub>5</sub> and other vanadyl compounds, 120, Cu(IV) in, stabilization, 114, 88 stabilization of V-Me-O-N (Me = Mo,W), synthesis by temperature-programmed mixed valence Cu(III)/Cu(IV) in perovskite lattice of  $La_{1-x}Sr_x$ reaction, 116, 205 CuO<sub>3</sub>, 114, 88  $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$ , cation distribution and coordina- $Sr_2MIrO_6$  (M = Ca,Mg), 115, 447 tion chemistry, structural and spectroscopic study, 118, 303 in synthesis of BaHgRuO<sub>5</sub>, 120, 223 Nonstoichiometry LaFeO<sub>3</sub>, ion migration, 118, 125 oxygen nonstoichiometry in NdMnO<sub>3-v</sub> PrMnO<sub>3+v</sub>, 118, 53  $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$ , 119, 120 and Sr, content in Pr<sub>2-v</sub>Sr<sub>v</sub>CuO<sub>4-δ</sub>, effect on microstructure and phase Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, 119, 120 stability, 116, 385  $(Nd_{2/3}Ce_{1/3})_4(Ba_{2/3}Nd_{1/3})_4Cu_6O_{16+x}$ , 120, 146 stoichiometry in  $Sr_3Co_2O_{7-y}$  (0.94  $\leq y \leq 1.22$ ), **115**, 499 in NdMnO<sub>3-y</sub> PrMnO<sub>3+y</sub>, 118, 53 Oxygen coulometry YBa<sub>2</sub>Cu<sub>3</sub>O<sub>v</sub>, measurement by vapor pressure scanning, 119, 62 Y-Cu-O system, analysis, 114, 420 Nuclear magnetic resonance <sup>27</sup>Al and <sup>13</sup>C, Al-O-R-O-Al gels, **119**, 319 P <sup>29</sup>Si, magic-angle spinning, in analysis of Cs<sub>4</sub>Sb<sub>4</sub>O<sub>8</sub>(Si<sub>4(x)</sub>Ge<sub>41-x</sub>O<sub>12</sub>) solid solution, 114, 528 Packings  $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O$ , **120**, 231 rod, see Rod packings Nucleation Palladium Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> kinetics, analysis by X-ray and IR spectroscopy, 116, 8 CePd<sub>2-x</sub>As<sub>2</sub>, with ThCr<sub>2</sub>Si<sub>2</sub> structure, structure refinement, 115, 37 LaPd<sub>2</sub>O<sub>4</sub>, synthesis, 114, 206  $LnPd_3As_2$  (Ln = La-Nd,Sm,Gd) arsenides, preparation, 115, 37 0 Pd<sub>9</sub>Si<sub>2</sub>, solubility of deuterium and hydrogen in, 120, 90 Slater functions, formulation by distance between subspaces, 116, 275 Optical analysis -TiO<sub>2</sub> films, photoassisted decomposition of salicyclic acid, 119, 339 KMgLa(PO<sub>4</sub>)<sub>2</sub> doped with Eu, 114, 282 Passivation Optical energy gap MOS capacitors, by fluoride-containing ZnO-B2O2-SiO2-P2O5  $(AgIn)_2(1-z)(MnIn_2)_zTe_4$ , 114, 539 glasses, OH-related capacitance-voltage recovery effect in, 118, Optical properties BaEu(CO<sub>3</sub>)<sub>2</sub>, correlation to crystallographic structure, 116, 286 Perovskite lattice CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, **114**, 159 La<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>3</sub>, mixed valence Cu(III)/Cu(IV) in, stabilization under Co<sub>x</sub>Cd<sub>1-x</sub>In<sub>2</sub>S<sub>4</sub> spinel solid solutions, 114, 524 high oxygen pressure, 114, 88 copper sulfide films of variable composition, 114, 469 Perovskites Na<sub>3</sub>La<sub>2</sub>(CO<sub>3</sub>)<sub>4</sub>F:Eu<sup>3+</sup>, correlation to crystallographic structure, 116, 286 BaCe<sub>v</sub>Pr<sub>1-v</sub>O<sub>3</sub>, 119, 405  $Zn_{1-z}Mn_zGa_2Se_4$ , 115, 416  $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln = La-Tb), 119, 224 Ordering BaPrO<sub>3</sub>, 119, 405 antiferromagnetic, CoU<sub>2</sub>O<sub>6</sub> NiU<sub>2</sub>O<sub>6</sub>, antiferromagnetic ordering, REBa<sub>2</sub>SbO<sub>6</sub> (RE = Pr,Sm,Gd), synthesis and characterization, as sub-114, 595 strates for YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-8</sub>, **116**, 193 BaMnO<sub>3-y</sub>  $(0.22 \le y \le 0.40)$ , 117, 21 CaFeTi<sub>2</sub>O<sub>6</sub>, high-pressure synthesis and crystal structure, 114, 277 cations, in BaBiO2Cl, 117, 201 CeVO<sub>3</sub>, magnetic and transport properties, 119, 24 and defect structure, 1201, 1212, and 1222 (Hg,Pr)-Sr-(Sr,Ca,Pr)-CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, conducting halide, transport, optical, and magnetic prop-Cu-O superconductors, 114, 369 erties, 114, 159 double cationic, HgBiSr<sub>7</sub>Cu<sub>2</sub>SbO<sub>15</sub>, 116, 53  $A_1A'$ CoRuO<sub>6</sub> ( $A_1A'$  = Sr,Ba,La), **114**, 174 magnetic, see Magnetic ordering Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies,  $Si_{1-x}C_x$ : H alloys, 117, 427 119,80 Oxidation, see also Reoxidation icosahedral-type, displacive crystallographic phase transition for, Nb<sub>7</sub>W<sub>10</sub>O<sub>47</sub>, transmission electron microscopy analysis of products, model, 119, 364 **119,** 420 La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Sn<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, Oxidation state 119,80 iron, in iron substituted γ-nickel oxyhydroxides, analysis, 114, 6 La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies,  $Pb_{1-x}In_xTe (x = 0.56), 116, 33$ LaMnO<sub>3+6</sub>, perovskite-type solid solutions, structural behavior, 114, 516  $LaBO_3$  (B = Cr,Mn,Fe,Co), oxygen ion migration, 118, 125 and ceramics, effects of ultrasound, macro- and microscopic analysis,

 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-v}$  (M = Co,Fe), synthesis, 119, 260

CUMULATIVE

La<sub>6.4</sub>Sr<sub>1.6</sub>Cu<sub>8</sub>O<sub>20</sub>, tetragonal, ordered substitution of iron for copper,
115, 469

Na<sub>2/3</sub>Th<sub>1/3</sub>TiO<sub>3</sub>, synthesis, letter to editor, 120, 207

Nd<sub>1-x</sub>Ca<sub>x</sub>FeO<sub>3-y</sub>, nonstoichiometry and physical properties, analysis,
114, 265

Nd<sub>1-x</sub>A<sub>x</sub>TiO<sub>3</sub> (A = Ca,Sr,Ba; 0 ≤ x ≤ 1), structure, transport, and magnetic properties, 114, 164

phases in Sm<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>2.5-x/2+δ</sub> PLD thin films, 116, 37

Pr<sub>0.7</sub>Sr<sub>0.05</sub>Ca<sub>0.25</sub>MnO<sub>3-δ</sub>, effects of spectacular giant magnetoresistance,
117, 424

related blocks, Aurivillius phases, Raman modes, temperature and polarization dependence, 114, 112

related compound, Y<sub>2</sub>Ba<sub>3</sub>Cu<sub>3</sub>Co<sub>2</sub>O<sub>12</sub>, synthesis by solid state reaction, 115, 407

 $Sm_{1-x}Nd_xNiO_3$ , preparation and metal-insulator properties, 120, 157  $Sm_2Sr_6Cu_8O_{17+\delta}$  films, analysis by HREM, 116, 300

SryBa<sub>1-y</sub>PrO<sub>3</sub>, 119, 405

SrCoO<sub>3-δ</sub>, electronic states, effects of oxygen, 119, 76

 $Sr_2MIrO_6$  (M = Ca,Mg), preparation and stabilization by high oxygen pressure, 115, 447

TaThN<sub>3</sub>, synthesis, 120, 378

 $Tb_2Ba_2Cu_2Ti_2O_{11}$ , synthesis and crystal structure, 117, 213 Phase analysis

quantitative X-ray, Y<sub>2</sub>BaCuO<sub>5</sub>-YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>, **116**, 136

Phase behavior

solid-phase,  $[n-C_9H_{19}NH_3]_2CuCl_4$ , characterization by FTIR, 117, 97 Phase composition

Co-Li<sub>2</sub>CO<sub>3</sub>, erratum, 116, 15: 117, 433

NiAs-Ni<sub>2</sub>In, intermetallic-type, superstructures in, analysis, 118, 313 Phase diagram

 $Ag_2S-Ga_2S_3-GeS_2$ , analysis by DTA and XRD, 117, 189  $Ag_2SO_4-Tl_2SO_4$ , 114, 271

Ce<sub>0.818</sub>Gd<sub>0.182</sub>O<sub>1.909-y</sub>, nonstoichiometric 10 mol%, **117**, 392

 $ACI/TbCl_3$  (A = K,Rb,Cs), 115, 484

La<sub>2</sub>O<sub>3</sub>-Mn<sub>2</sub>O<sub>3</sub>, 114, 516

LiF-ZrF<sub>4</sub>, reanalysis with Li<sub>4</sub>ZrF<sub>8</sub> and Li<sub>3</sub>Zr<sub>4</sub>F<sub>19</sub> crystal structures, 120, 187

T(z),  $(AgIn)_{2(1-z)}(MnIn_2)zTe_4$ , 114, 539

YbI<sub>2</sub>-AI (A = Na,K,Rb,Cs) phase diagrams, measurement and calculation, 114, 146

Phase relations

Nd<sub>2</sub>O<sub>3</sub>-Pr<sub>6</sub>O<sub>11</sub>-CuO ternary system, 115, 291

Phase stability

 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$  and  $Bi_2Sr_2CaCu_2O_{8+\delta}$ , 119, 120

Phase transformation

Pb<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, **116**, 179

Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, analysis, 119, 219

Phase transitions

Bi<sub>2</sub>MoO<sub>6</sub>, structural changes in, analysis, letter to editor, **119**, 210 Bi<sub>2</sub>Ti<sub>4</sub>O<sub>11</sub>, in situ analysis, **119**, 281

CsHSO<sub>4</sub>, 117, 412; 414

 $CuS_{1-x}Se_x$  ( $0 \le x \le 1$ ), analysis by X-ray diffractometry, 118, 176 displacive crystallographic, for A15-type superconductor alloys and icosahedral-type perovskites, 119, 364

successive, in  $ACu_7S_4$  (A = Tl,K,Rb), 115, 379

temperature, displacive,  $RAO_4$  and  $LiAO_3$ , (R = rare earth elements; A = Nb, Ta), relationship with covalence, 116, 28

Phasoids

in Sm<sub>1-x</sub>SrXCuO<sub>2.5-x/2+δ</sub> PLD thin films, **116,** 37

AgMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 117, 206

 $AgV_2(PO_4)P_2O_7$ , crystal structure determination, **115**, 521  $Al_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , synthesis and crystal structure, **120**, 197

BaMo(PO<sub>4</sub>)<sub>2</sub>, with yavapaiite layer structure, synthesis and characterization, 116, 364

 $BaVO(PO_4)(H_2PO_4) \cdot H_2O$ , synthesis, structure, and magnetism, 118, 241

 $Ba_8(VO)_6(PO_4)_2(HPO_4)_{11} \cdot 3H_2O$ , hydrothermal synthesis and crystal structure, **116**, 77

Ca<sub>10-x-y</sub>Cd<sub>x</sub>Pb<sub>y</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, solid solutions, analysis by X-ray and IR spectroscopy, **116**, 8

Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, induced radiation damage, analysis by TEM, 116, 265

Co<sub>2</sub>(OH)PO<sub>4</sub>, structure-directing effect of organic additives, **114**, 151 Cs<sub>9</sub>Mo<sub>9</sub>Al<sub>3</sub>P<sub>11</sub>O<sub>59</sub> with tunnel structure, isolation, **114**, 451

CsMo<sub>2</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, mixed valent monophosphate with layer structure, 116, 87

Cs(TiP)O<sub>5</sub>, crystal structure, 120, 299

 $\alpha$ - and  $\beta$ -CsTi<sub>3</sub>P<sub>5</sub>O<sub>19</sub>, synthesis and crystal structure, 115, 120

CuCrP<sub>2</sub>S<sub>6</sub>, copper disorder, stacking distortions, and magnetic ordering, 116, 208

Cu<sub>0.5</sub>(OH)<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, **117**, 157

Cu<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 117, 157

 $M_2$ HPO<sub>4</sub>– $M_2'$ HPO<sub>4</sub>–H<sub>2</sub>O (M,M' = Na,K,NH<sub>4</sub>), electrical conductivity measurements, **119**, 68

InPO<sub>4</sub>-1, synthesis and characterization, 117, 373

 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2~(0 < x < 0.4),$  synthesis and structure, 114, 399  $KH_2PO_4,$  crystal structure, 114, 219

KMgLa(PO<sub>4</sub>)<sub>2</sub> doped with Eu, optical and structural investigation, 114, 282

KMo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

 $\beta$ -K<sub>2</sub>Mo<sub>2</sub>O<sub>4</sub>P<sub>2</sub>O<sub>7</sub>, tunnel structure, **114**, 481

K<sub>3</sub>(Mo)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub> with tunnel structure, 114, 61

KNiPS<sub>4</sub>, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432

LiMoOP<sub>2</sub>O<sub>7</sub>, synthesis and structure determination, 120, 260

LiNb(OH)OPO<sub>4</sub>, structural analysis by XRD and EXAFS, 114, 317

Li<sub>2.88</sub>PO<sub>3.73</sub>N<sub>0.14</sub> with  $\gamma$ -Li<sub>3</sub>PO<sub>4</sub> structure, synthesis, crystal structure, and ionic conductivity, **115**, 313

 $\delta_1$ -LiZnPO<sub>4</sub>, preparation, structure determination, and thermal transformation, 117, 39

LiZnPO<sub>4</sub> · H<sub>2</sub>O, light-atom positions in, location by powder neutron diffraction, 114, 249

LiZnPO<sub>4</sub>, structure determination by ab initio methods, 114, 249

 $MgHOP_4 \cdot 0.78H_2O$ , ambient pressure and temperature synthesis, 114, 598

[Mn(H<sub>2</sub>O)]<sub>1/4</sub>(VO)<sub>3/4</sub>PO<sub>4</sub>· 2H<sub>2</sub>O, synthesis, characterization, and intercalation of vanadyl phosphate with manganese, **116**, 400

Mn<sub>2</sub>VO(PO<sub>4</sub>)<sub>2</sub> · H<sub>2</sub>O, hydrothermal synthesis and structure, 115, 76

Na<sub>4</sub>Al(PO<sub>4</sub>)<sub>2</sub>(OH), synthesis and characterization, 118, 412

α- and β-Na<sub>2</sub>CuP<sub>2</sub>O<sub>7</sub>, crystal structure, 120, 23

Na<sub>2</sub>GdOPO<sub>4</sub>, solid-state synthesis, X-ray powder diffraction, and IR data, 120, 275

NaMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 115, 240

Na<sub>3</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub>, tunnel structure and synthesis, 114, 543

Na<sub>0.75</sub>Mo<sub>1.17</sub>W<sub>0.85</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, synthesis and crystal structure, 120, 353

 $\operatorname{Na}M_x^{\text{IV}}(\operatorname{Ti},\operatorname{Zr})_{2-x}(\operatorname{PO}_4)_3$  ( $M=\operatorname{Nb},\operatorname{Mo}; 0\leq x\leq 1$ ), crystal, magnetic, and electrical properties, 114, 224

NbP<sub>2</sub>O<sub>7</sub>, with cubic structure, preparation, 119, 98

Nb<sub>2-x</sub>P<sub>3-v</sub>O<sub>12</sub>, preparation, composition, and structure, 116, 335

N(CH<sub>3</sub>)<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> · H<sub>2</sub>O, FT-IR and polarized Raman spectra, 120, 343

 $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18} \cdot 2H_2O$ , structural, DSC, and IR analysis, **114**, 42

NH<sub>4</sub>Mo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

 $NH_4Sn_2(PO_4)_3$ , hydrothermal synthesis and characterization, 119, 197  $Ni_{1.282(4)}Si_{1.284(5)}P_3$ , crystal structure, 114, 476

NiSi<sub>2</sub>P<sub>3</sub>, crystal structure, 114, 476

PbCo<sub>2</sub>(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub>, crystal structure, 118, 202

PbFe<sub>3</sub>( $P_2O_7$ )<sub>2</sub>, crystal structure, 118, 202

Pb<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>CrO<sub>4</sub>, phase transformation, 116, 179

Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, nucleation kinetics, analysis by X-ray and IR spectroscopy, 116, 8

Pb<sub>3</sub>(V,P)<sub>2</sub>O<sub>8</sub>, electronic lone pair localization and electrostatic energy calculations, 114, 459

(Po<sub>4</sub>)<sup>3</sup>-, in Li<sub>3</sub>AsO<sub>4</sub>, vibrational behavior, 115, 83

 $MP_2O_7$  (M = Mo, W), synthesis and magnetic and electrical properties, 115, 146

Ln<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203

P<sub>4</sub>ON<sub>6</sub>, crystal structure, 115, 265

Ru<sub>2</sub>P<sub>6</sub>O<sub>18</sub>, preparation and crystal structure, 119, 107

Ru(PO<sub>3</sub>)<sub>3</sub> · Ru<sub>2</sub>P<sub>6</sub>O<sub>18</sub>, preparation and crystal structure, 119, 107

 $M_{1/2}$ Sb $_{2/2}^{V}$ (PO<sub>4</sub>)<sub>3</sub> (M = Y,In,Sc), preparation and crystal structure, 118, 104

Sb<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, preparation and crystal structure, 118, 104

 $M_5 \text{SnP}_3$  ( $M \approx \text{Na,K:}$ ), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

ThFe<sub>5</sub>P<sub>3</sub>, crystal structure, 117, 80

Th<sub>4</sub>Fe<sub>17</sub>P<sub>10</sub>O<sub>1-x</sub>, crystal structure, 117, 80

TiO<sub>2</sub>-NaPO<sub>3</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> system, optically nonlinear glasses, Raman scattering and XAFS analysis, 120, 151

TIBePO<sub>4</sub>, and TIBeAsO<sub>4</sub> stereochemical activity of thallium (I) lone pair, 114, 123

U<sub>3</sub>Ni<sub>3,34</sub>P<sub>6</sub>, preparation, crystal structure, and physical properties, 116, 307

VOHPO<sub>4</sub> ·  $1/2H_2O_7$ , transformation to  $\gamma$ -(VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 119, 349

ZnO-B<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub>, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212

Zn<sub>2</sub>(OH)PO<sub>4</sub>, structure-directing effect of organic additives, 114, 151

Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, phase transformations, analysis, 119, 219

Zn<sub>3</sub>V<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub>, structure determination, 115, 140

 $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$ , synthesis and stability, 117, 275

Zr<sub>2</sub>(WO<sub>4</sub>)(PO<sub>4</sub>)<sub>2</sub>, structure determination by powder X-ray diffraction, 120, 101

Photocatalysts

fumed titanium dioxide, microstructural characterization, 115, 236 Nb<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub>, surface acidity, 115, 187

Platinum

Ln<sub>2</sub>Ba<sub>2</sub>CuPtO<sub>8</sub> (Ln = Ho-Lu), synthesis and characterization, 120, 316 Pt and TiO<sub>2</sub>(rutile)(110) surface, strong-metal-support interaction between, effect of oxygen defect, 119, 237

Plutonium

NaCl-type compound, thermodynamic and magnetic properties, 115, 66

dependence of Aurivillius phases Raman modes, 114, 112

Polarized Raman spectroscopy

(CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>COO · (COOH)<sub>2</sub> · H<sub>2</sub>O, 114, 129

N(CH<sub>3</sub>)<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> · H<sub>2</sub>O, 120, 343

Poly(acrylic acid)

LaMnO<sub>3+8</sub> synthesized with, surface characterization, 116, 343 Polychalcogenides

rare-earth salts, synthesis by moderate temperature solid-state metathesis, 117, 318

**Polymers** 

carbon-nitrogen, high-pressure synthesis, 117, 229

Polymorphism

reversible, garnet-alluaudite, evidence in NaCa<sub>2</sub> $M_2^{2+}$  (AsO<sub>4</sub>)<sub>3</sub> ( $M^{2+}$  = Mg,Ni,Co) structure, 118, 267

Potassium

CeK<sub>2</sub>(NO<sub>3</sub>)<sub>6</sub>, double valence change for cerium during thermal decomposition, letter to editor, 115, 295

 $M_2$ HPO<sub>4</sub>- $K_2$ HPO<sub>4</sub>- $H_2$ O ( $M = Na,K,NH_4$ ), electrical conductivity measurements, 119, 68

K2Ag2SnTe4, synthesis and characterization, 117, 247

KAISiO<sub>4</sub> polymorphs, synthesis and characterization on SiO<sub>2</sub>-KAiO<sub>2</sub> join, 115, 214

 $K_{2x}Ba_{2-x}Sb_4O_9(PO_4)_2$  (0 < x < 0.4), synthesis and structure, 114, 399

K2BaSnTe4, synthesis and characterization, 117, 247

KCl/TbCl<sub>3</sub> ternary chlorides in, analysis, 115, 484

 $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$ , electrical properties and structural characterization, 116, 290

 $KX - CuX_2 - H_2O(X^- = Cl^-, Br^-)$ , double salts, 114, 385

KCu<sub>7</sub>S<sub>4</sub>, physical properties and successive phase transitions, 115, 379

KeFeS<sub>2</sub>, tetrahedral FeS<sup>5</sup>-unit containing, X-ray absorption spectra, 119, 380

KH<sub>2</sub>PO<sub>4</sub>, crystal structure, 114, 219

K<sub>2</sub>HPO<sub>4</sub>-M<sub>2</sub>HPO<sub>4</sub>-H<sub>2</sub>O (M' = Na,K,NH<sub>4</sub>), electrical conductivity measurements, 119, 68

K<sub>x</sub>IrO<sub>2</sub>, structural study, 118, 372

KMgLa(PO<sub>4</sub>)<sub>2</sub> doped with Eu, optical and structural investigation, 114, 282

KMo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

KMo<sub>4</sub>O<sub>5</sub>, analysis of tetragonal forms, 117, 217

K<sub>2</sub>Mo<sub>2</sub>O<sub>10</sub> · 3H<sub>2</sub>O, crystal structure, determination by direct method/ powder diffraction package, 115, 225

β-K<sub>2</sub>Mo<sub>2</sub>O<sub>4</sub>P<sub>2</sub>O<sub>7</sub>, tunnel structure, 114, 481

K<sub>3</sub>(Mo)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub> with tunnel structure, 114, 61

KNB<sub>5</sub>GeO<sub>16</sub> · 2H<sub>2</sub>O, with 2D channel network, 115, 373

KNiPS<sub>4</sub>, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432

кон

concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254

incipient chemical reaction with scratched silicon surface, 120, 96

 $K_3SnX_3$  (X = P, As, Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

KRETa<sub>6</sub>Br<sub>18</sub> (RE = La-Lu,Y), crystal structure, 118, 274

 $K_2RETa_6Br_{18}$  (RE = Eu, Yb), crystal structure, 118, 274

 $K_6[\text{TeMo}_6O_{24}] \cdot 7H_2O$ , single crystals, infrared and polarized Raman spectra, 118, 341

 $K_2V_2O_8$  fresnoite-type vanadium oxides, magnetic susceptibility, 114, 499

KM<sup>III</sup>(WO<sub>4</sub>)<sub>2</sub> (M<sup>III</sup> = Bi,Cr), vibrational properties, 117, 177

Na<sub>4</sub>K[Cu(HIO<sub>6</sub>)<sub>2</sub>] · 12H<sub>2</sub>O, crystal structure, electronic spectra, and XPS, 115, 208

SiO<sub>2</sub>-KAlO<sub>2</sub> join, synthesis and characterization of KAlSiO<sub>4</sub> polymorphs on, 115, 214

YbI<sub>2</sub>~KI, phase diagrams, measurement and calculation, 114, 146 Powder diffraction

 $2(C_6H_5NH_3) \cdot Mo_3O_{10} \cdot 4H_2O$ , in crystal structure determination, 117, 103

and direct method package, in analysis of  $K_2Mo_2O_{10}$  ·  $3H_2O$ , 115, 225  $(NH_4)_2Mo_3O_{10}$  ·  $H_2O$ , 116, 422

Powder neutron diffraction

 $\gamma$ -CaSO<sub>4</sub>, CaSO<sub>4</sub> · 0.5H<sub>2</sub>O, and CaSO<sub>4</sub> · 0.6H<sub>2</sub>O, 117, 165 LiZnPO<sub>4</sub> · H<sub>2</sub>O light-atom positions, 114, 249

```
Powder X-ray diffraction
   Ag<sub>3</sub>[Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>], Rietveld refinements at 298, 623, and 723 K, 115, 55
   Ag<sub>2</sub>S-Ga<sub>2</sub>S<sub>3</sub>-GeS<sub>2</sub>, phase diagram, analysis by DTA and XRD, 117,
   (Ba_{1-x}Sr_x)(Sr_{0.67}Bi_{0.33})(Pb_{1-y}Bi_y)O_{6-\delta} compounds with (NH)_4FeF_6
         structure type, 115, 197
   BiLa<sub>2</sub>O<sub>4.5</sub>, 116, 72
   (BiS)_{1+\delta}(Nb_{1+\delta}S_2)n, misfit layer structures, 115, 274
   BiTeX (X = Cl, Br, I), in determination of crystal structure, 114, 379
   CaCu<sub>0.15</sub>Ga<sub>3.85</sub>, in analysis of crystal structure, 114, 342
   Ca<sub>2</sub>HfSi<sub>2</sub>O<sub>0</sub>, 115, 464
    y-CaSO<sub>4</sub>, CaSO<sub>4</sub> · 0.5H<sub>2</sub>O<sub>2</sub>, and CaSO<sub>4</sub> · 0.6H<sub>2</sub>O<sub>2</sub>, 117, 165
    Ca<sub>3</sub>ZrSi<sub>2</sub>O<sub>9</sub>, 115, 464
    MgO-MgCl2-H2O, chemical reactions, analysis, 114, 556
    Na<sub>2</sub>GdOPO<sub>4</sub>, 120, 275
    MOCuSe (M = Bi,Gd,Dy), 118,74
    M(ReO_4)_2 \cdot 4H_2O \ (M = Co, Zn), 115, 255
    Sn_{1-p}Cr_2S_{4-p}, 115, 7
    Y<sub>2</sub>BaCuO<sub>5</sub>-YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>, quantitative X-ray, 116, 136
    YbI<sub>2</sub> · H<sub>2</sub>O, in determination of crystal structure, 114, 308
    (Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O, 118, 303
    Zr<sub>2</sub>(WO<sub>4</sub>)(PO<sub>4</sub>)<sub>2</sub>, 120, 101
 Praseodymium
    BaCe<sub>v</sub>Pr<sub>1</sub> - yO<sub>3</sub>, magnetic properties, 119, 405
    BaPrO<sub>3</sub>, magnetic properties, 119, 405
    Bi<sub>3</sub>Pr<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68
    Cs<sub>3</sub>PrCl<sub>6</sub> · 3H<sub>2</sub>O, thermal dehydration and crystal structure, 116, 329
    Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta} (M = Cu,Pr), synthesis and crystal structure,
          114, 230
    (Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors,
          ordering principles and defect structures, 114, 369
    (Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl), synthesis and charac-
          terization, 115, 525
    Nd<sub>2</sub>O<sub>3</sub>-Pr<sub>6</sub>O<sub>11</sub>-CuO, phase relations, 115, 291
    PrAgSb<sub>2</sub>
       with HfCuSi2-type structure, preparation, 115, 305
       magnetism and crystal structure, 115, 441
    PrT_2Al_{20} (T = Ti,Mo,W), with CeCr_2Al_{20}-type structure, 114, 337
    PrBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-v</sub>, FT-IR skeletal study, 119, 36
    Pr<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-δ</sub>, synthesis, structure, and superconductivity, 119, 224
    PrBa<sub>2</sub>SbO<sub>6</sub>, synthesis and characterization, as substrates for YBa<sub>2</sub>
          Cu<sub>3</sub>O<sub>7-8</sub>, 116, 193
    PrCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305
    PrMnO<sub>3+v</sub>, crystal and defect structure, and oxygen nonstoichiometry,
          118, 53
    PrMnOGeO<sub>4</sub>, preparation and crystal structure, 120, 7
    PrNbO<sub>4</sub>, relationship between covalence and displacive phase transi-
          tion temperature, 116, 28
    Pr_4Ni_3O_{10-\delta}, synthesis, structure, and properties, 117, 236
    Pr<sub>9</sub>O<sub>16</sub>, crystal structure, 118, 133
    Pr_2O_3
       cation array structure, 119, 131
       monoclinic, identity with Pr<sub>9,33</sub>(SiO<sub>4</sub>)<sub>6</sub>O<sub>2</sub>, 120, 38
    Pr<sub>10</sub>O<sub>18</sub>, crystal structure, 118, 141
    PrPd<sub>3</sub>As<sub>2</sub> arsenides, preparation, 115, 37
    Pr<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203
    \alpha-PrS<sub>2</sub>, synthesis by moderate temperature solid-state metathesis,
          117, 318
    PrSe2, synthesis by moderate temperature solid-state metathesis,
    Pr_{9.33}(SiO_4)_6O_2, identity with monoclinic Pr_{9.33}(SiO_4)_6O_2, 120, 38
     Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta}, effects of spectacular giant magnetoresistance,
```

Pr<sub>1-x</sub>Sr<sub>x</sub>CoO<sub>3-δ</sub> solid solutions, oxide ion conduction, 120, 128

117, 424

419  $Pr_{2-\nu}Sr_{\nu}CuO_{4-\delta}$ , effect of oxygen and strontium content, 116, 385  $MPrTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274  $M_2$ PrTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43 PrTe<sub>3</sub>, synthesis by moderate temperature solid-state metathesis, 117, 318 Pr<sub>4</sub>V<sub>5</sub>Si<sub>4</sub>O<sub>22</sub>, with chevkinite structure, 116, 211  $\alpha$ -PrZr<sub>3</sub>F<sub>15</sub> series, cationic distribution, **118**, 389 rare-earth mixed oxide, magnetic susceptibility effect of crystal field, **114,** 52 Sr<sub>v</sub>Ba<sub>1-v</sub>PrO<sub>3</sub>, magnetic properties, 119, 405  $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$ , retarded Pr f hybridization and  $T_c$  suppression, 118, 215 Pressure, see also Vapor pressure scanning high formation of rhenium hydride, in situ diffraction study, 118, 299 NaClO<sub>3</sub> behavior, 118, 378 oxygen, high, stabilization of mixed valence Cu(III)/Cu(IV) in perovskite lattice of La<sub>1-x</sub> Sr<sub>x</sub>CuO<sub>3</sub>, 114, 88  $Sr_2MIrO_6$  (M = Ca,Mg), 115, 447 Promethium  $PmAO_4$  (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28 Pm<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-δ</sub>, synthesis, structure, and superconductivity, 119, Pm<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131  $MPmTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274 PmTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274  $M_2$ PmTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43 Pulsed laser deposition NbN<sub>x</sub>, synthesis, 117, 294 Sm<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>2.5-x/2+8</sub> thin films, perovskite phases and phasoids, 116, 37 Sm<sub>2</sub>Sr<sub>6</sub>Cu<sub>8</sub>O<sub>17+8</sub> perovskite thin films prepared by, HREM study, 116, 300 **Pyrochlores**  $Pb_{2-x}Ln_xRu_2O_{7-y}$  (Ln = Nd,Gd), synthesis, crystal structure, and electrical properties, 114, 15  $\text{Tl}_2\text{Nb}_2\text{O}_{6+x}$  ( $0 \le x \le 1$ ) solutions, continuous cubic type, 114, 575  $Y_2(Zr_\nu Ti_{1-\nu})_2O_7$ , neutron Rietveld analysis of disorder from Zr substitution, 117, 108 Pyroelectric properties Bi<sub>4</sub>Te<sub>2</sub>O<sub>9</sub>Br<sub>2</sub>, 116, 406 Q Quartz in concentrated basic media (NaOH, KOH, LiOH), kinetics and dissolution mechanism, effect of solvents, 118, 254 R Raman spectroscopy Aurivillius phases, 114, 112

CsGeBr<sub>3</sub>, pressure-induced phase transition, **118**, 20  $(NH_4)_6[TeMo_6O_{24}] \cdot Te(OH)_6 \cdot 7H_2O$ , **118**, 341

surface enhanced, see Surface enhanced Raman spectroscopy

TiO<sub>2</sub>-NaPO<sub>3</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> system optically nonlinear glasses, 120, 151

 $M^{I}M^{III}(WO_4)_2$  ( $M^{I} = Li, Na, K; M^{III} = Bi, Cr$ ), vibrational properties,

polarized, see Polarized Raman spectroscopy

 $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O} \ (M = \text{K,NH}_4), \ 118, \ 341$ 

117, 177

```
Reduction
                                                                                                                                               S
   LaCo<sub>1-1</sub>CrtO<sub>3</sub>, reduction and reoxidation properties, 119, 271
                                                                                                 Salicyclic acid
   MoO<sub>3</sub>, kinetics and mechanism, 118, 84
   temperature-programmed, see Temperature-programmed reduction
                                                                                                    photoassisted decomposition on TiO<sub>2</sub> and Pd/TiO<sub>2</sub> films, 119, 339
Reflection high-energy diffraction
                                                                                                 Salts
                                                                                                    double, Me^+X - CuX_2 - H_2O (Me^+ = K^+, NH^+_4Rb^+, Cs^+; X^- = Cl^-, Br^-),
   CaCuO2-SrCuO2 infinite-layer thin film heterostructures, 114,
        190
Reoxidation
                                                                                                    rocksalt, (Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and charac-
                                                                                                           terization, 120, 372
  LaCo<sub>1-t</sub>CrtO<sub>3</sub>, reduction and reoxidation properties, 119, 271
                                                                                                 Samarium
RHEED, see Reflection high-energy diffraction
                                                                                                    Bi<sub>2</sub>O<sub>3</sub>-Sm<sub>2</sub>O<sub>3</sub>, low-temperature stable phase, 120, 32
                                                                                                    Bi<sub>3</sub>Sm<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68
  ReH<sub>r</sub>, formation at high pressure, in situ diffraction study, 118, 299
                                                                                                    (Ca<sub>0.9</sub>Sm<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-tempera-
  M(ReO_4)_2 \cdot 4H_2O (M = Co,Zn), preparation and crystal structure
                                                                                                           ture thermoelectric performance, 120, 105
        determination, 115, 255
                                                                                                    PrPd<sub>3</sub>As<sub>2</sub> arsenides, preparation, 115, 37
   Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7, retarded Pr f hybridization and T_c suppres-
                                                                                                    SmAO_4 (A = Nb,Ta), relationship between covalence and displacive
        sion, 118, 215
                                                                                                           phase transition temperature, 116, 28
Rhodium
                                                                                                    SmAgSb<sub>2</sub>
  Slater functions, formulation by distance between subspaces, 116,
                                                                                                        with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305
        275
                                                                                                        magnetism and crystal structure, 115, 441
  Sr<sub>2</sub>RhO<sub>4</sub>, crystal structure, 118, 206
                                                                                                    SmT_2Al_{20} (T = Ti,Mo), with CeCr_2Al_{20}-type structure, 114, 337
Rietveld refinement
                                                                                                    Sm_6T_4Al_{43} (T = Ti, V, Nb, Ta), with Ho_6Mo_4Al_{43}-type structure, prepa-
  Ag<sub>3</sub>[Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>] structure from powder X-ray diffraction data, at 298,
                                                                                                           ration, 116, 131
        623, and 723 K, 115, 55
                                                                                                    SmBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-y</sub>, FT-IR skeletal study, 119, 36
  BiCaRu<sub>2</sub>O<sub>7-v</sub>, 119, 254
                                                                                                    Sm<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11-δ</sub>, synthesis, structure, and superconductivity, 119,
  Ca<sub>5</sub>Y<sub>4</sub>S<sub>11</sub>, NaCl-type structure, 119, 45
  HoSr_2Cu_{2.7}Mo_{0.3}O_{7.54} superconductor, 119, 115
                                                                                                    SmBa<sub>2</sub>SbO<sub>6</sub>, synthesis and characterization, as substrates for YBa<sub>2</sub>
  Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub> crystal structure, 115, 420
                                                                                                          Cu<sub>3</sub>O<sub>7 - & 116, 193</sub>
  Y_2(Zr_vTi_{1-v})_2O_7, neutron diffraction analysis of disorder from Zr sub-
                                                                                                    Sm<sub>2-x</sub>Ce<sub>x</sub>CuO<sub>4</sub>, oxygen variations, effect of internal stress, analysis by
        stitution, 117, 108
                                                                                                           thermogravimetry, 114, 491
Rod packings
                                                                                                    SmCo<sub>5</sub>, and Sm<sub>2</sub>Co<sub>17</sub>, and Sm<sub>2</sub>Co<sub>7</sub>, binary magnetic phases competing
  mathematical analysis, 114, 36
                                                                                                           for stability, leapfrog thermodynamics, 116, 92
Rubidium
                                                                                                    Sm_2MCo_2O_7 (M = Sr,Ba), synthetic, structural, electrical, and magnetic
  RbCl/TbCl<sub>3</sub> ternary chlorides in, analysis, 115, 484
                                                                                                           properties, 114, 286
  RbX - CuX_2 - H_2O(X^2 = Cl^2, Br^2), double salts, 114, 385
                                                                                                    SmCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305
  RbCu<sub>7</sub>S<sub>4</sub>, physical properties and successive phase transitions, 115,
                                                                                                    Sm<sub>1-x</sub>Nd<sub>x</sub>NiO<sub>3</sub>, preparation and metal-insulator properties, 120, 157
        379
                                                                                                    Sm<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131
  RbRETa_6Br_{18} (RE = La-Lu,Y), crystal structure, 118, 274
                                                                                                    Sm<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203
  Rb_2RETa_6Br_{18} (RE = Eu,Yb), crystal structure, 118, 274
                                                                                                    Sm<sub>1-x</sub>SrXCuO<sub>2.5-x/2+δ</sub> PLD thin films, perovskite phases and phasoids,
  RbTaCu<sub>2</sub>Te<sub>4</sub>, synthesis and characterization, 117, 247
                                                                                                           116, 37
  Rb<sub>2</sub>V<sub>3</sub>O<sub>8</sub> fresnoite-type vanadium oxides, magnetic susceptibility,
                                                                                                    Sm<sub>2</sub>Sr<sub>6</sub>Cu<sub>8</sub>O<sub>17+δ</sub> perovskite films, analysis by HREM, 116, 300
        114, 499
                                                                                                    MSmTa_6Br_{18} (M = K,Rb,Cs), crystal structure, 118, 274
  Rb<sub>2</sub>V<sub>4</sub>O<sub>9</sub>, synthesis, crystal structure, and magnetic properties, 115, 174
                                                                                                    SmTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274
  Rb<sub>2</sub>(WO<sub>3</sub>)<sub>3</sub>SeO<sub>3</sub>, synthesis, crystal structure and properties, 120, 112
                                                                                                    M_2SmTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = \text{monovalent cation}), synthesis and crystal struc-
   YbI<sub>2</sub>-RbI, phase diagrams, measurement and calculation, 114, 146
                                                                                                           ture, 120, 43
Ruddlesden-Popper nickelates
                                                                                                    Sm<sub>2</sub>(TeO<sub>3</sub>)<sub>3</sub> and Te<sub>4</sub>O<sub>11</sub>, tellurite formation, enthalpy determination,
   Ln_4Ni_3O_{10-\delta} (Ln = La,Pr,Nd), synthesis, structure, and properties,
                                                                                                           118, 210
        117, 236
Ruthenium
                                                                                                    Ba_{5-y}Sr_ySc_{2-x}Al_2Zr_{1+x}O_{13+x/2}, structural study, 118, 180
  BaHgRuO<sub>5</sub>, synthesis and structure, 120, 223
                                                                                                    ScCrC<sub>2</sub>, preparation, properties, and crystal structure, 119, 324
  BaLaCoRuO<sub>6</sub>, structural and electronic properties, 114, 174
                                                                                                    Sc<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131
  BiCaRu<sub>2</sub>O<sub>7-y</sub>, preparation and structure, 119, 254
                                                                                                    Sc_{1/2}Sb_{2/3}^{V}(PO_4)_3, preparation and crystal structure, 118, 104
  A,A'CoRuO<sub>6</sub> (A,A' = Sr,Ba,La), structural and electronic properties,
                                                                                                  Sechser chains
        114, 174
                                                                                                    Na<sub>2</sub>SnSe<sub>3</sub> with, synthesis, 117, 356
  GdRuC2, with filled NiAs structure, 118, 158
                                                                                                 Seebeck coefficient
  Pb_{2-x}Ln_xRu_2O_{7-y} (Ln = Nd,Gd), synthesis, crystal structure, and elec-
                                                                                                    Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, 119, 80
        trical properties, 114, 15
                                                                                                    La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Sn<sub>2</sub>O<sub>11</sub>, 119, 80
   Ru<sub>2</sub>P<sub>6</sub>O<sub>18</sub>, preparation and crystal structure, 119, 107
                                                                                                    La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, 119, 80
   Ru(PO<sub>3</sub>)<sub>3</sub> · Ru<sub>2</sub>P<sub>6</sub>O<sub>18</sub>, preparation and crystal structure, 119, 107
                                                                                                    LaCo_{0.2}Fe_{0.8}O_{3-\delta}, doped with Sr, 118, 117
  Slater functions, formulation by distance between subspaces, 116, 275
  SrLaCoRuO<sub>6</sub>, structural and electronic properties, 114, 174
                                                                                                     [Ba<sub>2</sub>(OH)<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>][Se<sub>4</sub>], synthesis and crystal structure, 120, 12
```

Ba(VO)<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(HSeO<sub>3</sub>)<sub>2</sub>, hydrothermal synthesis and crystal struc-

ture, 116, 77

CdCr<sub>2</sub>Se<sub>4</sub>, lattice dynamics, 118, 43

 $Sr_3Ru_2O_7$ , synthesis with  $Sr_2RuO_4 \cdot 0.25$  CO<sub>2</sub>, 116, 141

116, 141

Sr<sub>2</sub>RuO<sub>4</sub> · 0.25 CO<sub>2</sub>, synthesis, application in synthesis of Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>,

CoSeO<sub>3</sub>-II, crystal structure, 120, 182

 $Cr_2Sn_3Se_7$ , structural determination and magnetic properties, 115, 165  $CuS_{1-x}Se_x$  ( $0 \le x \le 1$ ), phase transition, determination by X-ray diffractometry, 118, 176

 $AGa_2Se_4$  (A = Cd,Hg), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442

HgCr<sub>2</sub>Se<sub>4</sub>, lattice dynamics, 118, 43

In<sub>x</sub>Nb<sub>3</sub>Se<sub>4</sub>, multilayer precursor synthesis, 117, 290

LaSe<sub>2</sub>, synthesis by moderate temperature solid-state metathesis, 117, 318

NaCo<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(OH), polarized electronic absorption spectra and crystal structure, **115**, 360

Na<sub>2</sub>SnSe<sub>3</sub>, with sechser single chains, synthesis, 117, 356

MOCuSe (M = Bi,Gd,Dy), powder X-ray and IR studies, 118, 74

PrSe<sub>2</sub>, synthesis by moderate temperature solid-state metathesis, 117, 318

SnSe<sub>2</sub>, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, **117**, 219

TiSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346

VSe, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346

 $M_2(WO_3)_3SeO_3$  ( $M = NH_4,Rb,Cs$ ), synthesis, crystal structure and properties, **120**, 112

ZnCr<sub>2</sub>Se<sub>4</sub>, lattice dynamics, 118, 43

Zn<sub>1-z</sub>MnzGa<sub>2</sub>Se<sub>4</sub>, energy gap values and *T(z)* diagram, **115**, 416 SERS, *see* Surface enhanced Raman spectroscopy Silica gel

 $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$  preparation in, **117**, 256 film, coated over scratched Si {111} surface, stabilization, **115**, 18 filtron

Ag<sub>3</sub>[Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>], structures at 298, 623, and 723 K from Rietveld refinements of powder X-ray diffraction data, **115**, 55

Ca<sub>3</sub>HfSi<sub>2</sub>O<sub>9</sub>, structure determination from powder diffraction, **115**, 464 Ca<sub>3</sub>ZrSi<sub>2</sub>O<sub>9</sub>, structure determination from powder diffraction, **115**, 464 (C<sub>18</sub>H<sub>30</sub>N<sub>3</sub>)<sub>2</sub> · [Si<sub>8</sub>O<sub>18</sub>(OH)<sub>2</sub>] · 41H<sub>2</sub>O, X-ray diffraction and NMR analysis, **120**, 231

Cs<sub>4</sub>Sb<sub>4</sub>O<sub>8</sub>(Si<sub>4(1-x)</sub>Ge<sub>4</sub>xO<sub>12</sub>), solid solution, electron and X-ray diffraction and <sup>29</sup>Si MAS NMR analysis, **114**, 528

with HfCuSi<sub>2</sub>, in ternary antimonides with related structure, preparation, 115, 305

KAlSiO<sub>4</sub> polymorphs, synthesis and characterization on SiO<sub>2</sub>-KAlO<sub>2</sub> join, 115, 214

La<sub>9,33</sub>(SiO<sub>4</sub>)<sub>6</sub>, identity with monoclinic La<sub>2</sub>O<sub>3</sub>, **120**, 38

Li<sub>2</sub>Ca<sub>2</sub>Si<sub>5</sub>O<sub>13</sub>, crystal structure determination, 114, 512

Lu<sub>2</sub>Fe<sub>2</sub>Si<sub>2</sub>, preparation, structure refinement, and properties, 114, 66 and metal and oxide devices, applications of polarizable and OH-containing glasses, mechanism, 120, 54

 $\epsilon\text{-Na}_2\text{Si}_2\text{O}_5$ , with high-pressure layer structure, synthesis, 119, 400

 $Ni_{1,282(4)}Si_{1,284(5)}P_3$ , crystal structure, **114**, 476

NiSi<sub>2</sub>P<sub>3</sub>, crystal structure, 114, 476

Me(OH)<sub>2</sub>-SiO<sub>2</sub> (Me = Ca,Mg,Sr), mixtures, surface changes in basicity and species, role of mechanical activation, 115, 390

Pd<sub>9</sub>Si<sub>2</sub>, solubility of deuterium and hydrogen in, 120, 90

Pr<sub>9.33</sub>(SiO<sub>4</sub>)<sub>6</sub>O<sub>2</sub>, identity with monoclinic Pr<sub>2</sub>O<sub>3</sub>, 120, 38

Pr<sub>4</sub>V<sub>5</sub>Si<sub>4</sub>O<sub>22</sub>, with chevkinite structure, 116, 211

scratched {111} surface

incipient chemical reaction with ethoxy and hydroxy groups, **120**, 96 silica gel film coated over, stabilization, **115**, 18

Si<sub>1-x</sub>Cx:H alloys, structural properties and chemical ordering, 117, 427 SiO<sub>2</sub>-KAlO<sub>2</sub> join, synthesis and characterization of KAlSiO<sub>4</sub> polymorphs on, 115, 214

 $MSi_xTe_2$  (M = Nb,Ta;  $1/3 \le x \le 1/2$ ), origin of short interslab Te-Te contacts in, analysis, 119, 394

ThCr<sub>2</sub>Si<sub>2</sub>, CePd<sub>2-x</sub>As<sub>2</sub> with related structure, 115, 37

 $Tm_2Fe_2Si_2$ , preparation, structure refinement, and properties, **114**, 66  $U_2Fe_{17-x}Si_xC_y$ , magnetic properties, **115**, 13

ZnO-B<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub>, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212

Zn<sub>2</sub>SiO<sub>4</sub>, Fe-doped single crystals, luminescence, **117**, 16 Silicon dioxide

and alumina pillared pillared materials, zeolite-like, preparation, 120, 381

glasses, CdS particles in, preparation by sol-gel method,  $\mathbf{118}$ , 1 Silver

 $Ag_3[Al_3Si_3O_{12}]$ , structures at 298, 623, and 723 K from Rietveld refinements of powder X-ray diffraction data, 115, 55

Ag<sub>4</sub>Hf<sub>3</sub>S<sub>8</sub>, crystal structure and conductivity, **115**, 112

 $(AgIn)_{2(1-z)}(MnIn_2)zTe_4$ , alloys, T(z) diagram and optical energy gap values, 114, 539

Ag<sub>2</sub>MnGeTe<sub>4</sub>, crystal symmetry, **115**, 192

AgMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 117, 206

Ag<sub>2</sub>MoO<sub>4</sub>, hydrothermal preparation, structure, and reactivity, **117**, 323

AAgSb<sub>2</sub> (A = Y,La-Nd,Sm,Gd-Tm,U), with HfCuSi<sub>2</sub>-type structure, preparation, **115**, 305

REAgSb<sub>2</sub> (RE = Y,La-Nd,Sm,Gd-Tm), magnetism and crystal structure, 115, 441

Ag<sub>2</sub>S-Ga<sub>2</sub>S<sub>3</sub>-GeS<sub>2</sub>, phase diagram, analysis by DTA and XRD, 117, 189

Ag<sub>3,8</sub>Sn<sub>3</sub>Ss, superionic conductor, crystal structure and conductivity, 116, 409

 $(1-x)Ag_2SO_4-(x)CaSO_4$  (x=0.01-0.20), defect chemistry, **116**, 232  $Ag_2SO_4-Tl_2SO_4$ , phase diagram and positive mixed cation effect, **114**, 271

AgV<sub>2</sub>(PO<sub>4</sub>)P<sub>2</sub>O<sub>7</sub>, crystal structure determination, 115, 521

 $Ag_4Zr_3S_8,$  superionic conductor, crystal structure and conductivity,  $\pmb{116},\,409$ 

colloids, 2-aminophenol in, analysis by SERS, 116, 427

K<sub>2</sub>Ag<sub>2</sub>SnTe<sub>4</sub>, synthesis and characterization, 117, 247

Slater functions, formulation by distance between subspaces, 116, 275 Sinterability

Co-Li<sub>2</sub>CO<sub>3</sub>, erratum, 116, 15; 117, 433

Slater functions

for Y-Cd atoms, formulation by distance between subspaces, 116, 275 Sodium

Ba<sub>4</sub>NaCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, electronic and vibrational spectra, 119, 359

 $M_2$ HPO<sub>4</sub>-Na<sub>2</sub>HPO<sub>4</sub>-H<sub>2</sub>O ( $M = \text{Na,K,NH_4}$ ), electrical conductivity measurements, **119**, 68

 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$  (0.23  $\leq x + y \leq$  0.37), bronzes obtained from sol-gel process, electrical properties, 118, 10

(Mg,Na,Al)<sub>2</sub>(Al,Zn)<sub>3</sub>, crystal structure, 115, 270

 $ANa_2X_4$  (A = Mg,Mn;X = Cl,Br), nonceramic preparation techniques, 117, 34

α-Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, crystal structure: structural relation to II-Na<sub>3</sub> Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, **118**, 33

 $NaAlO_2 \cdot 5/4H_2O$ , and dehydration product, crystal structure, 115, 126  $Na_4Al(PO_4)_2(OH)$ , synthesis and characterization, 118, 412

Na<sub>2</sub>BeGeO<sub>4</sub>, structure and ionic conductivity, 118, 62

 $NaCa_2M_2^{2+}$  (AsO<sub>4</sub>)<sub>3</sub> ( $M^{2+}$  = Mg,Ni,Co), structure, **118**, 267

NaCl, related U, Np, and Pu compounds, thermodynamic and magnetic properties, 115, 66

NaClO<sub>3</sub>, high-pressure behavior, 118, 378

NaCo<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(OH), polarized electronic absorption spectra and crystal structure, 115, 360

Na<sub>x</sub>Cr<sub>x</sub>Ti<sub>8-x</sub>O<sub>16</sub>, tunnel structure analysis for stability and sodium ion transport, **116**, 296

 $\alpha$ - and  $\beta$ -Na<sub>2</sub>CuP<sub>2</sub>O<sub>7</sub>, crystal structure, 120, 23

Na<sub>2</sub>Cu<sub>2</sub>ZrS<sub>4</sub>, synthesis and crystal structure, 117, 30

II-Na<sub>3</sub>Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, structural relation to α-Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub> and Na<sub>7</sub> Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub> sodium ion conductors, 118, 33

Na<sub>7</sub>Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub>, crystal structure: structural relation to II-Na<sub>3</sub> Fe<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, **118**, 33

Na<sub>5</sub>FeS<sub>4</sub>, tetrahedral FeS<sup>5</sup>-unit containing, X-ray absorption spectra, **119**, 380

Na<sub>2</sub>GdOPO<sub>4</sub>, solid-state synthesis, X-ray powder diffraction, and IR data, 120, 275

Na<sub>4</sub>H[Cu(H<sub>2</sub>TeO<sub>6</sub>)<sub>2</sub>] · 17H<sub>2</sub>O, crystal structure, electronic spectra, and XPS, **115**, 208

 $Na_2HPO_4-M_2'HPO_4-H_2O$  ( $M' = Na,K,NH_4$ ), electrical conductivity measurements, **119**, 68

 $Na_3La_2(CO_3)_4F$ :  $Eu^{3+}$ , optical properties, correlation to crystallographic structure, 116, 286

NaMnO<sub>4</sub>, lamellar MnO<sub>2</sub> from, thermal decomposition synthesis and characterization for rechargeable lithium cells, **120**, 70

NaMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, synthesis and structure, 115, 240

Na<sub>2</sub>MoO<sub>4</sub>, hydrothermal preparation, structure, and reactivity, 117, 323

Na<sub>3</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub>, tunnel structure and synthesis, 114, 543

Na<sub>0.75</sub>Mo<sub>1.17</sub>W<sub>0.83</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, synthesis and crystal structure, 120, 353

NaOH, concentrated basic media, quartz in, kinetics and dissolution mechanism, solvent influence, 118, 254

ε-Na<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>, with high-pressure layer structure, synthesis, 119, 400

 $NaSn_2X_2$  (X = As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

Na<sub>5</sub>SnX<sub>3</sub> (X = P,As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, **118**, 397

NaSn<sub>2</sub>Cl<sub>5</sub>, synthesis and crystal structure, 115, 158

Na<sub>2</sub>SnSe<sub>3</sub>, with sechser single chains, synthesis, 117, 356

Na<sub>2/3</sub>Th<sub>1/3</sub>TiO<sub>3</sub>, synthesis, letter to editor, **120**, 207

 $NaM_x^{IV}(Ti,Zr)_{2-x}(PO_4)_3$  ( $M = Nb,Mo; 0 \le x \le 1$ ), crystal, magnetic, and electrical properties, 114, 224

 $\alpha\text{-Na}_2\text{UO}_4$  and  $\beta\text{-Na}_2\text{UO}_4,$  structure and thermochemistry, 115, 299

 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$ , synthesis and structure, 119, 176

 $NaM^{III}(WO_4)_2$  ( $M^{III} = Bi,Cr$ ), vibrational properties, 117, 177

TiO<sub>2</sub>-NaPO<sub>3</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> system, optically nonlinear glasses, Raman scattering and XAFS analysis, **120**, 151

YbI<sub>2</sub>-NaI, phase diagrams, measurement and calculation, 114, 146 Sol-gel method

with hydrolysis catalysts, in preparation of crystalline structure of MgO, 115, 411

LaNiO<sub>3</sub> preparation, 116, 157

 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$  (0.23  $\leq x + y \leq$  0.37) prepared by, bronzes obtained,

NiCo<sub>2</sub>O<sub>4</sub> preparation, 116, 157

in preparation of CdS particles, in silica glasses, 118, 1

Solids

thermal decomposition, isokinetic relationships in, analysis by isoconversional methods for analysis, 114, 392

Solid solutions

 $Bi_2O_3$ -CaO, rhombohedral  $\beta$  type, TEM analysis, 118, 66

 $Bi_2O_3$ -SrO, rhombohedral  $\beta$  type, TEM analysis, 118, 66

 $\text{Ca}_x \text{Sn}_x \text{Ga}_{8-2x} \text{O}_{12}$  (2.5 < x < 3.0), cationic sites, simultaneous occurrence of  $\text{Sn}^{4+}$  on, 118, 6

 $Ca_{1-x}Sr_xNiN$  (0  $\leq x \leq 0.5$ ), preparation and crystal structure, and properties, 115, 353

(1 − x)CeO<sub>2</sub> · xYO<sub>1.5</sub>, defect fluorite to C-type sesquioxide transition in, analysis, 120, 290

 $CeO_2$ - $\delta YO_{21.5}$ , single crystal X-ray diffraction study, 115, 23

 $Co_xCd_{1-x}In_2S_4$ , spinels, structural, magnetic, and optical properties,

 $Cs_4Sb_4O_8(Si_{4(1-x)}Ge_4xO_{12})$ , electron and X-ray diffraction and <sup>29</sup>Si MAS NMR analysis, **114**, 528

LaMnO<sub>3+ $\delta$ </sub>, perovskite-type, structural behavior, **114**, 516

 $Ln_{1-x}Sr_xCoO_{3-\theta}$  (Ln = La, Pr, Nd), oxide ion conduction in, 120, 128

TiS, VS, TiSe, and VSe monochalcogenides, crystal chemistry and role of metal-metal bonding, **114**, 346

Tl<sub>2</sub>Nb<sub>2</sub>O<sub>6+x</sub>, continuous cubic pyrochlore type, **114**, 575

(1 - x)ZrO<sub>2</sub> · xRO1.5 (R = Ho,Dy,Tb,Gd), defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290

Solid state reactions

Y<sub>2</sub>Ba<sub>3</sub>Cu<sub>3</sub>Co<sub>2</sub>O<sub>12</sub>, 115, 407

Spinels

Al-Cu-Cr oxide semiconductors, compensated, analysis, **120**, 388  $\text{Co}_x\text{Cd}_{1-x}\text{In}_2\text{S}_4$ , structural, magnetic, and optical properties, **114**, 524 oxidic lithium, tetrahedral  $3d^5$  and  $3d^5$  or  $3d^3$  octahedral cations in, antiferromagnetic A-B interactions and electronic spectrum, **120**, 244

Stability, see Phase stability; Thermal stability

Stacking distortions

CuCrP<sub>2</sub>S<sub>6</sub>, 116, 208

Stoichiometry

oxygen in  $Sr_3Co_2O_{7-y}$  (0.94  $\leq y \leq 1.22$ ), 115, 499

Strontium

 $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$  (R = Gd-Lu,Y,Sc), structural study, **118**, 180

(Ba<sub>1-x</sub>Sr<sub>x</sub>)(Sr<sub>0.67</sub>Bi<sub>0.33</sub>)(Pb<sub>1</sub> - yBi<sub>y</sub>)O<sub>6-8</sub>, with (NH)<sub>4</sub>FeF<sub>6</sub> structure type, powder X-ray and neutron diffraction analysis, **115**, 197

 $Bi_{13}Ba_2Fe_{13}O_{66},$  from 2201–0201 intergrowth  $Bi_2Sr_4Fe_2O_{10},$  synthesis, 118, 357

Bi<sub>2</sub>O<sub>3</sub>-SrO, rhombohedral  $\beta$  type solid solutions in, TEM analysis, 118, 66

Bi<sub>1.8</sub>Pb<sub>0.4</sub>Sr<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10+8</sub>, phase stability, oxygen nonstoichiometry, and superconductivity properties, **119**, 120

 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$ , with intergrowths of 2201 and 0201 structure, synthesis, **118**, 227

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, chemical diffusion and synthesis kinetics, 116, 314

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+8</sub>, phase stability, oxygen nonstoichiometry, and superconductivity properties, 119, 120

BiSrCaCuO, electronic lone pair localization and electrostatic energy calculations, 114, 459

Bi<sub>16</sub>Sr<sub>28</sub>Cu<sub>17</sub>O<sub>69+δ</sub>, synthesis and characterization, **119**, 169

 $Bi_2Sr_4Fe_2O_{10}$ , 2201–0201 intergrowth,  $Bi_{13}Ba_2Fe_{13}O_{66}$  from, synthesis, 118, 357

 $Ca_{1-x}Sr_xNiN$  ( $0 \le x \le 0.5$ ) solid solutions, preparation, crystal structure, and properties, 115, 353

(Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372

CuSr(HCOO)<sub>4</sub>, crystal structure and thermal decomposition, **117**, 145 HgBiSr<sub>7</sub>Cu<sub>2</sub>SbO<sub>15</sub>, double cationic ordering, **116**, 53

Hg<sub>0.4</sub>Ce<sub>0.5</sub>Cu<sub>0.1</sub>Sr<sub>2-x</sub>LarCuO<sub>4+8</sub>, synthesis and characterization, 116, 347

(Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222 superconductors, ordering principles and defect structures, **114**, 369

 $(Hg_{1-x}M_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}(M=Pr,Pb,Bi,Tl)$ , synthesis and characterization, **115**, 525

 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$ , modulated superconducting oxides, structural aspects, **120**, 332

HoSr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.54</sub>, synthesis and crystal structure, 119, 115

LaCo<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-.5</sub>, Sr doped, thermochemical stability, electrical conductivity, and Seebeck coefficient, **118**, 117

 $La_{1-x}Sr_xCoO_{3-\delta}$  (0 <  $x \le 0.50$ ), 118, 323

 $La_{0.2}Sr_{0.8}Cu_{0.4}M_{0.6}O_{3-y}$  (M = Co, Fe), synthesis, 119, 260

La<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>3</sub>, perovskite lattice, mixed valence Cu(III)/Cu(IV) in, stabilization under high oxygen pressure, **114**, 88

La<sub>6.4</sub>Sr<sub>1.6</sub>Cu<sub>8</sub>O<sub>20</sub>, ordered substitution of iron for copper, 115, 469

(La<sub>1-x</sub>Sr<sub>x</sub>)<sub>8</sub>Cu<sub>8</sub>O<sub>16+δ</sub>, oxygen content and structure relationship, **115**, 490

LaSrFeO<sub>4</sub>, structure and electrical properties, effects of substitution of alkaline earths or Y for La, 115, 456

La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub>

La/Sr vacancy defects, imaging by HREM, 114, 211 ordered La(Sr)-deficient nonstoichiometry in, analysis by HRTEM, 120, 175

La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> bulk samples, giant magnetoresistance, letter to editor, 114, 297

mixed valent manganese and nickel oxide ceramics, superconducting properties, 116, 355

 $Nd_{1-x}Sr_xTiO_3$  ( $0 \le x \le 1$ ), structure, transport, and magnetic properties, **114**, 164

 $Pr_{0.7}Sr_{0.05}Ca_{0.25}MnO_{3-\delta}$ , effects of spectacular giant magnetoresistance, 117, 424

Pr<sub>2-y</sub>Sr<sub>y</sub>CuO<sub>4-δ</sub>, effect of oxygen and strontium content, **116**, 385 Sm<sub>1-x</sub>Sr<sub>X</sub>CuO<sub>2.5-x/2+δ</sub> PLD thin films, perovskite phases and phasoids,

Sm<sub>2</sub>Sr<sub>6</sub>Cu<sub>8</sub>O<sub>17+6</sub> perovskite films, analysis by HREM, **116**, 300

 $Sr^{2+},$  doped  $La_{1.2}Tb_{0.8}CuO_{4+\delta},$  derivatives, structural and conducting properties, 115, 332

SrAu<sub>2</sub>O<sub>4</sub>, preparation and crystal structure, 118, 247

Sr<sub>y</sub>Ba<sub>1-y</sub>PrO<sub>3</sub>, magnetic properties, 119, 405

SrCoO<sub>3-8</sub>, electronic states, effects of oxygen, 119, 76

 $Ln_{1-x}Sr_xCoO_{3-\delta}(Ln = La,Pr,Nd)$  solid solutions, oxide ion conduction, **120**, 128

Ln<sub>2</sub>SrCo<sub>2</sub>O<sub>7</sub> (Ln = Sm,Gd), synthetic, structural, electrical, and magnetic properties, 114, 286

 $Sr_3Co_2O_{7-y}$  (0.94  $\leq y \leq 1.22$ ), structure and oxygen stoichiometry, **115**, 499

Sr<sub>2</sub>CoRuO<sub>6</sub>, structural and electronic properties, 114, 174

SrCuO<sub>2</sub> orthorhombic crystals, growth and structural refinement, 114, 289

 $SrCuO_2$ -CaCuO2 infinite-layer thin film heterostructures, growth monitored by RHEED, **114**, 190

(Sr[Fe(CN)<sub>5</sub>NO] · 4H<sub>2</sub>O), crystal structure, determination by X-ray diffraction, 120, 1

 $Sr_2MIrO_6$  (M = Ca,Mg), preparation and stabilization by high oxygen pressure, 115, 447

 $Sr_3MIrO_6$  (M = Ni,Cu,Zn), structure and magnetic properties, 117, 300  $Sr_{1-x}La_xTiO_{3+0.5x}$ , layer structure, determination by high-resolution electron microscopy, 117, 88

Sr<sub>3</sub>La<sub>2</sub>Ti<sub>2</sub>O<sub>10</sub>, preparation and characterization, 119, 412

Sr<sub>5</sub>Mn<sub>4</sub>CO<sub>3</sub>O<sub>10</sub>, synthesis and structure, 120, 279

SrMnO<sub>3-x</sub> electronic properties, **114**, 242

 $Ln_{1-x}Sr_xMnO_3$  ( $Ln = rare\ earths$ ), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204

SrNb<sub>4</sub>O<sub>6</sub>, crystal structure, 114, 301

SrNiN, preparation, crystal structure, and properties, 115, 353

 $R_{1-x} Sr_x NiO_3$  ( $R = La, Nd; 0 \le x \le 0.1$ ), hole and electron doping, 116, 146

Sr(OD)2, crystal structure, 119, 157

Sr(OH)<sub>2</sub>-SiO<sub>2</sub>, mixtures, surface changes in basicity and species, role of mechanical activation, **115**, 390

Sr<sub>2</sub>RhO<sub>4</sub>, crystal structure, 118, 206

 $Sr_3Ru_2O_7$ , synthesis with  $Sr_2RuO_4 \cdot 0.25$   $CO_2$ , 116, 141

 $Sr_2RuO_4 \cdot 0.25 \ CO_2$ , synthesis, application in synthesis of  $Sr_3Ru_2O_7$ , 116, 141

 $SrSn_2X_2$  (X = As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

 $Sr_4Tl_2CO_3O_6$ , oxycarbonates built up from rock salt layers, 116, 321  $Sr_3V_2O_{6.99}$ , preparation, electronic, and magnetic properties, 118, 292  $SrY_2S_4$ , structure and properties, 117, 363

Sr<sub>2</sub>ZnN<sub>2</sub>, synthesis and crystal structure, 119, 375

 $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$ , retarded Pr f hybridization and  $T_c$  suppression, 118, 215

Structure

average, and superstructure,  $BiLa_2O_{4.5}$  X-ray powder and electron diffraction studies, 116, 72

BaCuO<sub>2+x</sub>, 119, 50

 $Bi_{2-x}Nb_xO_{3+x}$  solid solution, 119, 311

CePd<sub>2-x</sub>As<sub>2</sub>, with ThCr<sub>2</sub>Si<sub>2</sub> structure, refinement, 115, 37

 $A, A' \text{CoRuO}_6 (A, A' = \text{Sr,Ba,La}), 114, 174$ 

crystal, see Crystal structure

CsMo<sub>2</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, mixed valent monophosphate, 116, 87

cubic stabilized zirconias, disordered, modulation wave analysis, 115, 43 defect, see Defect structure

electronic, InCdBr3, 116, 45

 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$ , **120**, 332

 $La_2MIrO_6$  (M = Mg,Co,Ni,Zn), 116, 199

 $(La_{1-x}Sr_x)_8Cu_8O_{16+\delta}$ , relationship to structure, 115, 490

LaSrFeO<sub>4</sub>, effects of substitution of alkaline earths or Y for La, 115, 456

LiNb(OH)OPO<sub>4</sub>, analysis by XRD and EXAFS, 114, 317

M<sub>2</sub>O<sub>3</sub>, cation array, 119, 131

magnetic, YBaCuFeO<sub>5</sub>, 114, 24

microstructure, see Microstructure

ε-Na<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>, 119, 400

 $Nd_{1-x}A_xTiO_3$  ( $A = Ca,Sr,Ba; 0 \le x \le 1$ ), 114, 164

Pr<sub>2-ν</sub>Sr<sub>ν</sub>CuO<sub>4-δ</sub>, effect of oxygen, 116, 385

superstructure, see Superstructure

thiogallate,  $AGa_2X_4$  (A = Cd,Hg; X = S,Se) compounds crystallizing in, lattice dynamical calculations, 114, 442

 ${\rm TiO_2}$  photocatalyst, fumed, microstructural characterization, 115, 236 tunnel, see Tunnel structure

 $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}],$  correlations with  $V_2O_5$  and other vanadyl compounds,  $\bm{120},\,137$ 

Sulfamic acid

NH<sub>2</sub>HSO<sub>3</sub>, analysis by vibrational and surface enhanced Raman scattering, **116**, 217

Sulfur

Ag<sub>4</sub>Hf<sub>3</sub>S<sub>8</sub>, crystal structure and conductivity, 115, 112

Ag<sub>2</sub>S-Ga<sub>2</sub>S<sub>3</sub>-GeS<sub>2</sub>, phase diagram, analysis by DTA and XRD, 117, 189

Ag<sub>3.8</sub>Sn<sub>3</sub>S<sub>8</sub>, superionic conductor, crystal structure and conductivity, 116, 409

 $(1-x)Ag_2SO_4-(x)CaSO_4$  (x = 0.01-0.20), defect chemistry, **116**, 232  $Ag_2SO_4-Tl_2SO_4$ , phase diagram and positive mixed cation effect, **114**, 271

Ag<sub>4</sub>Zr<sub>3</sub>S<sub>8</sub>, superionic conductor, crystal structure and conductivity, 116, 409

BaCu<sub>2</sub>S<sub>2</sub>, electrical and magnetic properties, 117, 73

α-BaCu<sub>4</sub>S<sub>3</sub>, electrical and magnetic properties, 117, 73

BaNb<sub>0.8</sub>S<sub>3-δ</sub>, structure and physical properties, 115, 427

BaNbS<sub>3</sub>, structure and physical properties, 115, 427

BaTa<sub>2</sub>S<sub>5</sub>, superconducting and normal state properties, 116, 392

BaY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363

(BiS)<sub>1.11</sub>NbS<sub>2</sub>, layered composite crystal structure, 116, 61

 $(BiS)_{1+\delta}(Nb_{1+\epsilon}S_2)n$ , misfit layer structures, analysis by TEM and XRD, 115, 274

Ca<sub>4</sub>Al<sub>6</sub>O<sub>16</sub>S, crystal structure, 119, 1

γ-CaSO<sub>4</sub>, CaSO<sub>4</sub> · 0.5H<sub>2</sub>O, and CaSO<sub>4</sub> · 0.6H<sub>2</sub>O, crystal structure, determination by powder diffraction methods, **117**, 165

CaY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363

Ca<sub>5</sub>Y<sub>4</sub>S<sub>11</sub>, NaCl-type structure, Rietveld refinement, 119, 45

CdS particles, preparation in silica glasses by sol-gel method, 118, 1

 $\text{Co}_x\text{Cd}_{1-x}\text{In}_2\text{S}_4$ , spinel solid solutions, structural, magnetic, and optical properties, 114, 524

CoCr<sub>2</sub>S<sub>4</sub>, lattice dynamics, 118, 43

Cr<sub>2</sub>S<sub>3</sub>-CuS, copper-chromium sulfide spinel and thermal decomposition reactions in, 117, 122

CsHSO<sub>4</sub>

phase transitions, 117, 412

thermally induced phase transitions, 117, 414

CuCrP<sub>2</sub>S<sub>6</sub>, copper disorder, stacking distortions, and magnetic ordering, 116, 208

CuCr<sub>2</sub>S<sub>4</sub>, spinel formation, thermal decomposition reactions in crystalline mixtures, 117, 122

CuS,  $Cu_{1.4}S$ ,  $Cu_{1.8}S$ , and  $Cu_2S$  films, optical and electrical properties, 114, 469

 $ACu_7S_4$  (A = Tl,K,Rb), physical properties and successive phase transitions, 115, 379

CuS-Cr<sub>2</sub>S<sub>3</sub>, copper-chromium sulfide spinel and thermal decomposition reactions in, 117, 122

 $CuS_{1-x}Se_x$  ( $0 \le x \le 1$ ), phase transition, determination by X-ray diffractometry, 118, 176

doped YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> pellets, copper whisker growth from inside, 117, 151

GaMo<sub>4</sub>S<sub>8</sub>-type compounds, tetrahedral clusters: metal bonding analysis, **120**, 80

 $AGa_2S_4$  (A = Cd,Hg), compounds crystallizing in thiogallate-type structure, lattice dynamical calculations, 114, 442

(Gd<sub>e</sub>Sn<sub>1-e</sub>S)<sub>1.16</sub>(NbS<sub>2</sub>)<sub>3</sub>, crystal structure and synthesis, 114, 435

KeFeS<sub>2</sub>, tetrahedral FeS<sup>5</sup>-unit containing, X-ray absorption spectra, 119, 380

KNiPS<sub>4</sub>, with one- and two-dimensional structural arrangements, addendum, 116, 107; 117, 432

 $\alpha$ -LaS<sub>2</sub> and  $\beta$ -LaS<sub>2</sub>, synthesis by moderate temperature solid-state metathesis, 117, 318

La<sub>4</sub>Ti<sub>3</sub>S<sub>4</sub>O<sub>8</sub>, synthesis and characterization, 114, 406

La<sub>6</sub>Ti<sub>2</sub>S<sub>8</sub>O<sub>5</sub>, synthesis and characterization, 114, 406

 $La_{20}Ti_{11}S_{44}O_6,$  preparation and crystal structure determination, 120,  $\,$  164

 $\rm Mn_x TaS_2$  , intercalation compounds, physical properties and homogeneity range, 114, 1

 $M_x M_{0_6} S_8$  (M = Sn, Co, Ni, Pb, La, Ho), amorphous precursors for low-temperature preparation, 117, 269

Na<sub>2</sub>Cu<sub>2</sub>ZrS<sub>4</sub>, synthesis and crystal structure, 117, 30

Na<sub>5</sub>FeS<sub>4</sub>, tetrahedral FeS<sup>5</sup>-unit containing, X-ray absorption spectra, 119, 380

Nb<sub>3</sub>SBr<sub>7</sub>, synthesis, crystal structure, and magnetic susceptibility, 120, 311

NH<sub>2</sub>HSO<sub>3</sub>, analysis by vibrational and surface enhanced Raman scattering, 116, 217

PrS<sub>2</sub>, synthesis by moderate temperature solid-state metathesis, 117,

 $A_2$ S (A = N,K; x = 1,2,3,4), synthesis by moderate temperature solidstate metathesis, 117, 318

Sn<sub>1-p</sub>Cr<sub>2</sub>S<sub>4-p</sub> channel-type composite crystal, X-ray and electron diffraction study, **115**, 7

SnS<sub>2</sub>, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, 117, 219

 $Sn_4S_9[(C_3H_7)_4N]_2$ , preparation and structural characterization, 114, 506  $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH]$ , preparation and structural characterization, 114, 506

SnSe<sub>2</sub>, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, 117, 219

(SO<sub>4</sub>)<sup>2-</sup>, in Li<sub>3</sub>AsO<sub>4</sub>, vibrational behavior, 115, 83

SrY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363

TaS<sub>2</sub>,6R polytype, physical properties, 114, 486

TiS, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346

 $TIV_{5-y}Fe_yS_8$  (y = 0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, 119, 147

VS, and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346

 $M_x$ W<sub>6</sub>s<sub>8</sub> (M = Sn,Co,Ni,Pb,La,Ho), amorphous precursors for low-temperature preparation, 117, 269

ZnCr<sub>2</sub>S<sub>4</sub>, lattice dynamics, 118, 43

Superconductivity

 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln = La-Tb), 119, 224

 $Bi_{1.8}Pb_{0.4}Sr_2Ca_2Cu_3O_{10+\delta}$ , 119, 120

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>, 119, 120

mixed valent nickel and manganese oxide ceramics, 116, 355

Nd<sub>2</sub>CuO<sub>4</sub>-Nd<sub>2</sub>CuO<sub>4</sub>, system, after treatment under oxidizing conditions, 115, 540

Superconductors

A15-type alloys, displacive crystallographic phase transition for, model, 119, 364

BiSrCaCuO-type, electronic localization and electrostatic energy calculation in  $\alpha$ -PbO, SnO, Pb<sub>1-x</sub>(TiO)<sub>x</sub>O, Pb<sub>3</sub>O<sub>4</sub>, Pb<sub>3</sub>(V,P)<sub>2</sub>O<sub>8</sub>, 114, 459

(Hg,Pr)-Sr-(Sr,Ca,Pr)-Cu-O, 1201, 1212, and 1222, ordering principles and defect structures, 114, 369

 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$ , structural aspects, **120**, 332

HoSr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.54</sub>, synthesis and crystal structure, 119, 115

Superstructure

and average structure, BiLa<sub>2</sub>O<sub>4.5</sub> X-ray powder and electron diffraction studies, 116, 72

NbP<sub>2</sub>O<sub>7</sub>, preparation, 119, 98

NiAs-Ni<sub>2</sub>In-type intermetallic phase, 118, 313

Surface acidity

Nb<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> photocatalysts, 115, 187

Surface enhanced Raman scattering

NH<sub>2</sub>HSO<sub>3</sub>, 116, 217

Surface enhanced Raman spectroscopy

2-aminophenol in silver colloids, 116, 427

 $(CH_3)_3NCH_2COO \cdot (COOH)_2 \cdot H_2O$ , 114, 129

Synthesis

AgMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, 117, 206

 $Al_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , **120**, 197

 $Ba_{2-x}Bi_xCu_2O_5$  (0  $\leq x \leq 1.5$ ), 114, 585

BaCuAs<sub>2</sub>O<sub>7</sub>, 118, 280

 $Ln_2Ba_2CuPtO_8$  (Ln = Ho-Lu), 120, 316

 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln = La-Tb), 119, 224

 $Ba_2M_2F_7Cl$  and  $Ba_2MM'F_7Cl$   $(M,M' = Mn^{2+},Fe^{2+},Co^{2+},Ni^{2+},Zn^{2+}),$  115, 98

BaFe<sub>12-2x</sub>Co<sub>x</sub>Ti<sub>x</sub>O<sub>19</sub> (0 < x < 1), **115**, 347

BaHgRuO<sub>5</sub>, 120, 223

BaMo(PO<sub>4</sub>)<sub>2</sub> with yavapaiite layer structure, 116, 364

 $[Ba_2(OH)_2(H_2O)_{10}][Se_4]$ , 120, 12

REBa<sub>2</sub>SbO<sub>6</sub> (RE = Pr,Sm,Gd) as substrates for YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7- $\delta$ </sub> films, **116**, 193

Ba<sub>8</sub>Ta<sub>4</sub>Ti<sub>3</sub>O<sub>24</sub>, 114, 560

Ba<sub>10</sub>Ta<sub>7.04</sub>Ti<sub>1.2</sub>O<sub>30</sub>, **114,** 560

BaTe<sub>2</sub>, 117, 247

 $Ba_xV_8O_{16}$  (x = 1.09(1)), 115, 88

BaVO(PO<sub>4</sub>)( $H_2PO_4$ ) ·  $H_2O$ , 118, 241

Ba<sub>2</sub>ZnN<sub>2</sub>, 119, 375

Bi<sub>13</sub>Ba<sub>2</sub>Fe<sub>13</sub>O<sub>66</sub>, from 2201-0201 intergrowth Bi<sub>2</sub>Sr<sub>4</sub>Fe<sub>2</sub>O<sub>10</sub>, 118, 357

Bi<sub>2</sub>Fe<sub>4-x</sub>Al<sub>x</sub>O<sub>9</sub>, 114, 199

Bi<sub>3</sub>NF<sub>6</sub>, 114, 73

 $Bi_3RE_5O_{12}$  (RE = Y,La,Pr-Lu), related phases, 116, 68

 $Bi_{n+1}Sr_{2n+2}Ba_{n-1}Fe_{n+1}O_{6n+4}$ , 118, 227

Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>, **116**, 314

 $Bi_{16}Sr_{28}Cu_{17}O_{69+\delta}$ , **119**, 169

CaFeTi<sub>2</sub>O<sub>6</sub>, high-pressure method, 114, 277

Na<sub>2/3</sub>Th<sub>1/3</sub>TiO<sub>3</sub>, synthesis, letter to editor, 120, 207 (Ca,Th)(N,O) and (Sr,Th)(N,O) rocksalt phases, 120, 372  $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$ , 119, 176 Ca<sub>3</sub>Tl<sub>2</sub>O<sub>6</sub>, 115, 508 Nb<sub>3</sub>SBr<sub>2</sub>, 120, 311  $Ln_2MCo_2O_7$  (Ln = Sm,Gd; M = Sr,Ba), 114, 286 NdNiO<sub>3</sub>, electrochemical methods, 114, 294 β-Co(OH)<sub>2</sub> organic additive-mediated, 114, 550 Ni-Al-M (M = Cr.Fe), 118, 285 Cs<sub>9</sub>Mo<sub>9</sub>Al<sub>3</sub>P<sub>11</sub>O<sub>59</sub>, 114, 451  $Ln_a Ni_3 O_{10-} \delta (Ln = La, Pr, Nd), 117, 236$ CsNbOB<sub>2</sub>O<sub>5</sub>, 120, 74 CsTaOB<sub>2</sub>O<sub>5</sub>, 120, 74  $Pb_{2-x}Ln_xRu_2O_{7-y}$  (*Ln* = Nd,Gd), **114**, 15  $\alpha$ - and  $\beta$ -CsTi<sub>3</sub>P<sub>5</sub>O<sub>19</sub>, 115, 120  $MP_2O_7$  (M = Mo, W), 115, 146 cubic stabilized zirconias, 115, 43 PrMnOGeO<sub>4</sub>, 120, 7 rare-earth chalcogenides, 117, 318 Cu(C<sub>4</sub>H<sub>5</sub>N<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, 117, 333  $Cu^{II}(1,4-C_4H_4N_2)(C_4O_4)(OH_2)_4$ , 117, 256 RbTaCu<sub>2</sub>Te<sub>4</sub>, 117, 247 Eu<sub>3</sub>Ba<sub>2</sub>Mn<sub>2</sub>Cu<sub>2</sub>O<sub>12</sub>, 115, 1 Sm<sub>1-r</sub>Nd<sub>r</sub>NiO<sub>3</sub>, 120, 157  $Ga_2O_3(ZnO)m$  (m = 7,8,9,16), in  $In_2O_3-ZnGa_2O_4-ZnO$  system,  $Sm_2Sr_6Cu_8O_{17+\delta}$  films, 116, 300 **116,** 170 Sr<sub>5</sub>Mn<sub>4</sub>CO<sub>3</sub>O<sub>10</sub>, 120, 279  $(Gd_{\epsilon}Sn_{1-\epsilon}S)_{1.16}(NbS_{2})_{3}$ , 114, 435 Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>, 116, 141  $Hg_{2-x}M_xBa_2Pr_2Cu_2O_{10-\delta}$  (M = Cu,Pr), 114, 230 Sr<sub>2</sub>RuO<sub>4</sub> · 0.25 CO<sub>2</sub>, 116, 141  $Hg_{0.4}Ce_{0.5}Cu_{0.1}Sr_{2-x}LarCuO_{4+\delta}$ , 116, 347 Sr<sub>3</sub>V<sub>2</sub>O<sub>6.99</sub>, 118, 292 Sr<sub>2</sub>ZnN<sub>2</sub>, 119, 375  $(Hg_{1-r}M_r)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$  (M = Pr,Pb,Bi,Tl), 115, 525  $M_2RETa_6Br_{15}O_3$  (M = monovalent cation; RE = rare earths), 120, 43 HoSr<sub>2</sub>Cu<sub>2.7</sub>Mo<sub>0.3</sub>O<sub>7.54</sub>, 119, 115 hydrothermal, see Hydrothermal synthesis TaCu<sub>3</sub>Te<sub>4</sub>. 117, 247 InCdBr<sub>3</sub>, 116, 45  $M'-RTaO_4$  (R = Gd,Y,Lu), letter to editor, 118, 419 InGaO<sub>3</sub>(ZnO)<sub>3</sub>, in In<sub>2</sub>O<sub>3</sub>-ZnGa<sub>2</sub>O<sub>4</sub>-ZnO system, 116, 170 TaThN<sub>3</sub>, 120, 378 InMnO<sub>3</sub>, 116, 118 Tb<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, 117, 213 In, Nb<sub>3</sub>Se<sub>4</sub>, by multilayer precursor synthesis, 117, 290  $Ti_2(Ba_2Gd)Gd_2 = xCe_xCu_2O_{13}$ , 114, 57  $In_2O_3(ZnO)m$  (m = 3,4,5), in  $In_2O_3-ZnGa_2O_4-ZnO$  system, 116, 170  $A_4\text{Tl}_2\text{CO}_3\text{O}_6$  (A = Ca,Sr,Ba), 116, 321 InPO<sub>4-1</sub>, 117, 373 VC, 120, 320 K<sub>2</sub>Ag<sub>2</sub>SnTe<sub>4</sub>, 117, 247  $A_2V_4O_9$ , (A = Rb,Cs), 115, 174 KAlSiO<sub>4</sub> polymorphs on SiO<sub>2</sub>-KAlO<sub>2</sub>, 115, 214  $(V^{IV}O)[V^VO_4] \cdot 0.5[C_3N_2H_{12}]$ , 120, 137  $K_2xBa_{2-x}Sb_4O_9(PO_4)_2$  (0 < x < 0.4), 114, 399 V-Me-O-N (Me = Mo, W), with temperature-programmed reaction, K<sub>2</sub>BaSnTe<sub>4</sub>, 117, 247 116, 205  $KNB_5GeO_{16} \cdot 2H_2O$ , 115, 373  $M_2(WO_3)_3SeO_3$  (M = NH<sub>4</sub>,Rb,Cs), 120, 112 LaMnO<sub>3</sub>, electrochemical methods, 114, 294 Y<sub>2</sub>Ba<sub>3</sub>Cu<sub>3</sub>Co<sub>2</sub>O<sub>12</sub>, 115, 407 LaMnO<sub>3+8</sub>, 116, 343; 119, 164  $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$ , 117, 275 La<sub>2</sub>O<sub>2</sub>CN<sub>2</sub>, 114, 592 LaPd<sub>2</sub>O<sub>4</sub>, 114, 206 T La<sub>4</sub>Ti<sub>3</sub>S<sub>4</sub>O<sub>8</sub>, 114, 406 La<sub>6</sub>Ti<sub>2</sub>S<sub>8</sub>O<sub>5</sub>, 114, 406 Tantalum LiCoO<sub>2</sub>, 117, 1 BaTa<sub>2</sub>S<sub>5</sub>, superconducting and normal state properties, 116, 392 LiMoOP<sub>2</sub>O<sub>7</sub>, 120, 260 Ba<sub>8</sub>Ta<sub>4</sub>Ti<sub>3</sub>O<sub>24</sub>, synthesis and crystal structure, 114, 560 Li<sub>2.88</sub>PO<sub>3.73</sub>N<sub>0.14</sub>, 115, 313 Ba<sub>10</sub>Ta<sub>7.04</sub>Ti<sub>1.2</sub>O<sub>30</sub>, synthesis and crystal structure, **114**, 560  $\delta_1$ -LiZnPO<sub>4</sub>, 117, 39 CsErTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274 Lu<sub>3</sub>O<sub>2</sub>F<sub>5</sub>, 119, 125 CsTaOB<sub>2</sub>O<sub>5</sub>, synthesis and characterization, 120, 74 metastable materials by high-pressure methods, 117, 229 MgHOP<sub>4</sub> · 0.78H<sub>2</sub>O at ambient pressure and temperature, 114, 598 impedance spectroscopy, 116, 185 Mn<sub>4</sub>As<sub>3</sub>, 119, 344 relationship between covalence and displacive phase transition tem- $[Mn(H_2O)]1/4(VO)3/4PO_4 \cdot 2H_2O, 116, 400$ perature, 116, 28  $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$   $(0 \le \delta \le 1)$ , 117, 48  $RTaO_4$  (R = Nd-Er), relationship between covalence and displacive MnO2, from thermal decomposition of NaMnO4, for rechargeable phase transition temperature, 116, 28 lithium cells, 120, 70  $Mn_2(MnTa_3)N_{6-\delta}O_{2+\delta}$  ( $0 \le \delta \le 1$ ), synthesis, structure, and magnetic Mn<sub>2</sub>OBO<sub>3</sub>, 114, 311 susceptibility, 117, 48 Mn<sub>x</sub>TaS<sub>2</sub>, 114, 1 Mn<sub>x</sub>TaS<sub>2</sub>, intercalation compounds, physical properties and homogene- $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$  (x = 0.53,1.00), 118, 28 ity range, 114, 1 MoO<sub>3</sub>-II, soft chemical method, 119, 199 RbTaCu<sub>2</sub>Te<sub>4</sub>, synthesis and characterization, 117, 247  $M_2\text{MoO}_4$  ( $M = \text{Na,NH}_4,\text{Ag}$ ), 117, 323 Sr<sub>2</sub>Zn<sub>0.2</sub>Ga<sub>0.8-x</sub>Mn(Cr)<sub>x</sub>W<sub>0.2</sub>Ta<sub>0.8</sub>O<sub>6</sub>, mixed valent oxide ceramic, su- $\alpha$ -Na<sub>3</sub>Al<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>, 118, 33 perconducting properties, 116, 355 Na<sub>4</sub>Al(PO<sub>4</sub>)<sub>2</sub>(OH), 118, 412  $Ta_6T_4Al_{43}$  (T = Ti,V,Nb,Ta), with  $Ho_6Mo_4Al_{43}$ -type structure, prepara-Na<sub>2</sub>Cu<sub>2</sub>ZrS<sub>4</sub>, 117, 30 tion, 116, 131 Na<sub>7</sub>Fe<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub>, 118, 33  $M_2RETa_6Br_{18}$ ,  $MRETa_6Br_{18}$ , and  $RETa_6Br_{18}$  (M = monovalent cation; Na<sub>2</sub>GdOPO<sub>4</sub>, in solid state, 120, 275 RE = rare earth), crystal structure, 118, 274 NaMn<sub>3</sub>(PO<sub>4</sub>)(HPO<sub>4</sub>)<sub>2</sub>, 115, 240  $M_2RETa_6Br_{15}O_3$  (M = monovalent cation; RE = rare earths), synthesis Na<sub>3</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub>, 114, 543 and crystal structure, 120, 43  $Na_{0.75}Mo_{1.17}W_{0.83}O_3(PO_4)_2$ , 120, 353 TaCu<sub>3</sub>Te<sub>4</sub>, synthesis and characterization, 117, 247 NaSn<sub>2</sub>Cl<sub>5</sub>, 115, 158

Na<sub>2</sub>SnSe<sub>3</sub>, with sechser single chains, 117, 356

Ta<sub>2</sub>N, formation by air ignition, letter to editor, 119, 207

M'-RTaO<sub>4</sub> (R = Gd, Y, Lu), synthesis and characterization, letter to editor, 118, 419

Ta<sub>2</sub>O<sub>5</sub>, effect of laser irradiation, letter to editor, 118, 417

TaS<sub>2</sub>, 6R polytype, physical properties, 114, 486

 $TaA_xTe_2$  (A = Si,Ge; 1/3  $\leq x \leq$  1/2), origin of short interslab Te-Te contacts in, analysis, 119, 394

TaThN<sub>3</sub>, synthesis, 120, 378

UTa<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, 114, 337

Y<sub>3</sub>TaO<sub>7</sub> EXAFS analysis and reinvestigation of structure, 114, 79 Technetium

Slater functions, formulation by distance between subspaces, 116, 275 Tellurium

(AgIn)<sub>2(1-2)</sub>(MnIn<sub>2</sub>)zTe<sub>4</sub>, alloys, T(z) diagram and optical energy gap values, **114**, 539

Ag<sub>2</sub>MnGeTe<sub>4</sub>, crystal symmetry, 115, 192

BaTe<sub>2</sub>, synthesis and characterization, 117, 247

BiTeX (X = Cl, Br, I), crystal structure, determination by powder X-ray diffraction, 114, 379

Bi<sub>2</sub>TeO<sub>5</sub>-Bi<sub>2</sub>Te<sub>2</sub>O<sub>7</sub>, phase region, analysis by electron microscopy, **116**, 240

Bi<sub>4</sub>Te<sub>2</sub>O<sub>9</sub>Br<sub>2</sub>, pyroelectric phase, crystal structure, 116, 406

(Cr<sub>1-x</sub>Fe<sub>x</sub>)<sub>3</sub>Te<sub>4</sub>, magnetic properties, 120, 49

K<sub>2</sub>Ag<sub>2</sub>SnTe<sub>4</sub>, synthesis and characterization, 117, 247

K<sub>2</sub>BaSnTe<sub>4</sub>, synthesis and characterization, 117, 247

 $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$ , electrical properties and structural characterization, **116**, 290

La<sub>2</sub>Te<sub>3</sub>, synthesis by moderate temperature solid-state metathesis, 117, 318

 $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$ , crystal structure, electronic spectra, and XPS, 115, 208

(NH<sub>4</sub>)<sub>6</sub>[TeMo<sub>6</sub>O<sub>24</sub>] · Te(OH)<sub>6</sub> · 7H<sub>2</sub>O, single crystals, infrared and polarized Raman spectra, **118**, 341

 $Pb_{1-x}In_xTe$  (x = 0.56), oxidation states, 116, 33

PrTe<sub>3</sub>, synthesis by moderate temperature solid-state metathesis, 117, 318

RbTaCu<sub>2</sub>Te<sub>4</sub>, synthesis and characterization, 117, 247

Sr<sub>2</sub>Zn<sub>0.2</sub>Ga<sub>0.8-x</sub>Mn(Cr)<sub>x</sub>Te<sub>0.2</sub>Sb<sub>0.8</sub>O<sub>6</sub>, mixed valent oxide ceramic, superconducting properties, 116, 355

 $Sr_2Zn_{1-x}Mn_xTe_{1-x}Sb_xO_6$ , mixed valent oxide ceramic, superconducting properties, 116, 355

TaCu<sub>3</sub>Te<sub>4</sub>, synthesis and characterization, 117, 247

 $MA_x$ Te<sub>2</sub> (M = Nb,Ta; A = Si,Ge;  $1/3 \le x \le 1/2$ ), origin of short interslab Te–Te contacts in, analysis, **119**, 394

 $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O}$  ( $M = \text{K,NH}_4$ ), single crystals, infrared and polarized Raman spectra, 118, 341

TeO<sub>2</sub>, in formation of tellurites of Er,Nd,Sm,Ho, and Eu, **118**, 210 Te<sub>4</sub>O<sub>11</sub>, in formation of tellurites of Er,Nd,Sm,Ho, and Eu, **118**, 210 Tl<sub>2</sub>GeTe<sub>3</sub>, crystal structure, **117**, 351

TEM, see Transmission electron microscopy

Temperature

dependence of Aurivillius phases Raman modes, 114, 112

displacive, phase transition,  $RAO_4$  and  $LiAO_3$ , (R = rare earth elements; A = Nb,Ta), relationship with covalence, 116, 28

effect on green-to-blue up-conversion, from  $U^{4+}$  ion in  $Cs_2ZrCl_6$ , effect of temperature, 116, 113

in V-Me-O-N (Me = Mo,W) synthesis, 116, 205

Temperature-programmed reduction

with in situ Mössbauer spectroscopy and X-ray diffraction, in analysis of Fe-Mo-O catalysts, 117, 127

in synthesis of VC, 120, 320

Terbium

Bi<sub>2</sub>O<sub>3</sub>-Tb<sub>2</sub>O<sub>3</sub>, low-temperature stable phase, 120, 32

 $Bi_3Tb_5O_{12}$ , related phases, synthesis and characterization, 116, 68  $ACI/TbCl_3$  (A = K,Rb,Cs), ternary chlorides in, analysis, 115, 484

 $La_{1.2}Tb_{0.8}CuO_{4+\delta}$ , with  $T^*$  structure, conducting properties and structure, 115, 332

TbAO<sub>4</sub> (A = Nb,Ta), relationship between covalence and displacive phase transition temperature, 116, 28

TbAgSb<sub>2</sub>

with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

magnetism and crystal structure, 115, 441

Tb<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, synthesis and crystal structure, 117, 213

 $Tb_2Ba_2Cu_2Ti_2O_{11-\delta}$ , synthesis, structure, and superconductivity, 119, 224

TbCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

Tb<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

MTbTa<sub>6</sub>Br<sub>18</sub> (M = K,Rb,Cs), crystal structure, 118, 274

TbTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274

 $M_2$ TbTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43

TbTi<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, **114**, 337

(1 − x)ZrO<sub>2</sub> · xTbO<sub>1.5</sub>, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290

Ternary chlorides

in  $AKCI/TbCl_3$  (A = K,Rb,Cs), analysis, 115, 484

Tetraethyl orthosilicate

incipient chemical reaction with scratched silicon surface, 120, 96 Thallium

 $Ag_2SO_4$ - $Tl_2SO_4$ , phase diagram and positive mixed cation effect, 114, 271

CaTl<sub>2</sub>O<sub>4</sub> and Ca<sub>2</sub>Tl<sub>2</sub>O<sub>5</sub>, characterization as chemical twins of rock salt structure, 114, 428

Ca<sub>3</sub>Tl<sub>2</sub>O<sub>6</sub>, synthesis and crystal structure, 115, 508

Ca<sub>3</sub>Tl<sub>4</sub>O<sub>9</sub>, isolation, 119, 134

 $Hg_{1-x}Tl_xSr_{4-y}Ba_yCu_2CO_3O_{7-\delta}$ , modulated superconducting oxides, structural aspects, 120, 332

 $(Hg_{1-x}TI_x)(Sr,Ba)_2Pr_2Cu_2O_{9-\delta}$ , synthesis and characterization, 115,

TIBeAsO<sub>4</sub> and TIBePO<sub>4</sub>, stereochemical activity of thallium (I) lone pair, 114, 123

 $A_4$ Tl<sub>2</sub>CO<sub>3</sub>O<sub>6</sub> (A = Ca,Sr,Ba), oxycarbonates built up from rock salt layers, 116, 321

TiCu<sub>7</sub>S<sub>4</sub>, physical properties and successive phase transitions, **115**, 379 Tl<sub>2</sub>GeTe<sub>3</sub>, crystal structure, **117**, 351

 $\text{Tl}_2\text{Nb}_2\text{O}_{6+x}$  (0  $\leq x \leq 1$ ) solution, continuous cubic pyrochlore type, 114, 575

Tl<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

 $TIV_{5-y}Fe_yS_8$  (y = 0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, **119**, 147

α-TIZr<sub>3</sub>F<sub>15</sub> series, cationic distribution, 118, 389

Thermal behavior

 $\alpha$ - and  $\beta$ -AlF<sub>3</sub> · 3H<sub>2</sub>O, incorporation of Cu(II), analysis by ESR, 116, 249

 $Co_x Cu_{1-x} Fe_2 O_4$  (0  $\leq x < 0.3$ ), erratum, 117, 64; 117, 433

Thermal decomposition

associated reactions in CuS-Cr<sub>2</sub>S<sub>3</sub>, crystal mixtures, 117, 122

 $CeK_2(NO_3)_6$ , double valence change for cerium during, letter to editor, 115, 295

CuSr(HCOO)<sub>4</sub>, 117, 145

 $NaMnO_4$ ,  $MnO_2$  from, for synthesis and characterization for rechargeable lithium cells, 120, 70

solids, isokinetic relationships in, analysis by isoconversional methods for analysis, 114, 392

Thermal stability

LaCo<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub>, doped with Sr, **118**, 117

LiCoO<sub>2</sub>, 117, 1

Thermal transformation

 $\delta_1$ -LiZnPO<sub>4</sub>, 117, 39

Thermochemistry

 $\alpha$ - and  $\beta$ -Na<sub>2</sub>UO<sub>4</sub> 115, 299

Thermodynamics, see also Leapfrog thermodynamics

binary mixed crystals in sub-quasi-chemical/Debye approximation, 115, 368

 $ACu_7S_4$  (A = Tl,K,Rb), 115, 379

U, Np, and Pu NaCl-type compounds, 115, 66

Thermoelectric power

 $ACu_7S_4$  (A = Tl,K,Rb), 115, 379

high-temperature, performance of  $(Ca_{0.9}M_{0.1})MnO_3$  (M = Y,La,Ce, Sm,In,Sn,Sb,Pb,Bi), 120, 105

Thermogravimetric analysis

 $Ln_{2-x}Ce_{x}CuO_{4}$ , 114, 491

Thiogallate

structure,  $AGa_2X_4$  (A = Cd,Hg; X = S,Se) compounds crystallizing in, lattice dynamical calculations, 114, 442

Thiosulfate cancrinite

hydrothermally synthesized, structure and properties,  $\mathbf{117}$ , 386 Thorium

(Ca,Th)(N,O) and (Sr,Th)(N,O) phases, synthesis and characterization, 120, 372

Na<sub>2/3</sub>Th<sub>1/3</sub>TiO<sub>3</sub>, synthesis, letter to editor, 120, 207

TaThN<sub>3</sub>, synthesis, 120, 378

ThCr<sub>2</sub>Si<sub>2</sub>, CePd<sub>2-x</sub>As<sub>2</sub> with related structure, 115, 37

ThFe<sub>5</sub>P<sub>3</sub>, crystal structure, 117, 80

Th<sub>4</sub>Fe<sub>17</sub>P<sub>10</sub>O<sub>1-x</sub>, crystal structure, 117, 80

 $R_{1-x}$ Th<sub>x</sub>NiO<sub>3</sub> (R = La,Nd;  $0 \le x \le 0.1$ ), hole and electron doping, **116**, 146

 $WTh_8Zr_{18}F_4O_{53}$ , superstructure, associating anion-excess and anion-deficient blocks, 115, 283

Thulium

 $Ba_{5-y}Sr_yTm_{2-x}Al_2Zr_{1+x}O_{13+x/2}$ , structural study, 118, 180

Tm<sup>3+</sup>, PbF<sub>2</sub>/GeO<sub>2</sub>/WO<sub>3</sub>, glass doped with blue up-conversion emission, 115, 71

 $Tm_2Fe_2Si_2C$ , preparation, structure refinement, and properties, 114, 66  $TmAgSb_2$ 

with HfCuSi<sub>2</sub>-type structure, preparation, **115**, 305 magnetism and crystal structure. **115**, 441

TmBa2Cu3O7-v, FT-IR skeletal study, 119, 36

Tm<sub>2</sub>Ba<sub>2</sub>CuPtO<sub>8</sub>, synthesis and characterization, 120, 316

TmCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305

 $Tm_2Cu_2O_5$ , structural characterization by neutron diffraction, 115, 324

TmNbO<sub>4</sub>, relationship between covalence and displacive phase transition temperature, 116, 28

Tm<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131

 $MTmTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274

TmTa<sub>6</sub>Br<sub>18</sub>, crystal structure, 118, 274

 $M_2$ TmTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43

TmTi<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, **114**, 337

Ag<sub>3,8</sub>Sn<sub>3</sub>Ss, superionic conductor, crystal structure and conductivity, 116, 409

AuNi<sub>2</sub>Sn<sub>4</sub>, crystal structure, 119, 142

 $Ca_xSn_xGa_{8-2x}O_{12}$  (2.5 < x < 3.0), solid solutions, cationic sites, simultaneous occurrence of  $Sn^{4+}$  on, 118, 6

(Ca<sub>0.9</sub>Sn<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature thermoelectric performance, **120**, 105

CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, transport, optical, and magnetic properties, 114, 159

Cr<sub>2</sub>Sn<sub>3</sub>Se<sub>7</sub>, structural determination and magnetic properties, **115**, 165 (Gd<sub>e</sub>Sn<sub>1-e</sub>S)<sub>1.16</sub>(NbS<sub>2</sub>)<sub>3</sub>, crystal structure and synthesis, **114**, 435

K<sub>2</sub>Ag<sub>2</sub>SnTe<sub>4</sub>, synthesis and characterization, 117, 247

K<sub>2</sub>BaSnTe<sub>4</sub>, synthesis and characterization, 117, 247

La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Sn<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80

NaSn<sub>2</sub>Cl<sub>5</sub>, synthesis and crystal structure, 115, 158

Na<sub>2</sub>SnSe<sub>3</sub>, with sechser single chains, synthesis, 117, 356

NH<sub>4</sub>Sn<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, hydrothermal synthesis and characterization, **119**, 197 <sup>119</sup>Sn, Mössbauer spectroscopy, in analysis of bonding in Zintl phases, **118**, 397

 $M_5$ Sn $X_3$  (M =Na,K;X =P,As,Sb), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, **118**, 397

 $M\operatorname{Sn}_2X_2$  ( $M = \operatorname{Na,Sr}; X = \operatorname{As,Sb}$ ), Mössbauer spectroscopy, in analysis of bonding in Zintl phases, 118, 397

 $Sn_{1-r}Co_rO_v$  (0 <  $x \le 0.15$ ), thin films, structural models, 116, 256

 $Sn_{1-p}Cr_2S_{4-p}$  channel-type composite crystal, X-ray and electron diffraction study, 115, 7

 $Sn_xMo_6S_8$ , amorphous precursors for low-temperature preparation, 117, 269

SnO, electronic lone pair localization and electrostatic energy calculations, 114, 459

SnS<sub>2</sub>, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, 117, 219

 $Sn_4S_9[(C_3H_7)_4N]_2$ , preparation and structural characterization, **114**, 506  $Sn_4S_9[(C_3H_7)_4N] \cdot [(CH_3)_3NH]$ , preparation and structural characterization, **114**, 506

SnSe<sub>2</sub>, layered structures, structural evolution to 3- and 4-connected tin oxy-sulfides, **117**, 219

Sn<sub>x</sub>W<sub>6</sub>S<sub>8</sub>, amorphous precursors for low-temperature preparation, 117, 269

Titanium

 $Ln_2Ba_2Cu_2Ti_2O_{11-\delta}$  (Ln = La-Tb), synthesis, structure, and superconductivity, **119**, 224

 $BaFe_{12-2x}Co_xTi_xO_{19}$ 

crystallite size and shape, determination by X-ray line broadening analysis, 114, 534

samples with composition range 0 < x < 1, synthesis for magnetic recording, 115, 347

Ba<sub>2</sub>Fe<sub>2</sub>Ti<sub>4</sub>O<sub>13</sub>, preparation, crystal structure, dielectric properties, and magnetic behavior, 120, 121

Ba<sub>8</sub>Ta<sub>4</sub>Ti<sub>3</sub>O<sub>24</sub>, synthesis and crystal structure, 114, 560

Ba<sub>10</sub>Ta<sub>7.04</sub>Ti<sub>1.2</sub>O<sub>30</sub>, synthesis and crystal structure, **114**, 560

Ba<sub>2</sub>TiO<sub>4</sub>, with titanate tetrahedra, luminescence, 118, 337

Bi<sub>2</sub>Ti<sub>4</sub>O<sub>11</sub>, phase transition, in situ analysis, 119, 281

CaFeTi<sub>2</sub>O<sub>6</sub>, high-pressure synthesis and crystal structure, 114, 277

Cs(TiAs)O<sub>5</sub>, crystal structure, 120, 299

Cs(TiP)O<sub>5</sub>, crystal structure, 120, 299

 $\alpha$ - and  $\beta$ -CsTi<sub>3</sub>P<sub>5</sub>O<sub>19</sub>, synthesis and crystal structure, **115**, 120

Eu<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80

La<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, high-temperature transport and defect studies, 119, 80

La<sub>0.5</sub>Li<sub>0.5</sub>TiO<sub>3</sub>, microstructural study, 118, 78

 $La_4Ti_3S_4O_8$ , synthesis and characterization, 114, 406

La<sub>6</sub>Ti<sub>2</sub>S<sub>8</sub>O<sub>5</sub>, synthesis and characterization, 114, 406

 $La_{20}Ti_{11}S_{44}O_6$ , preparation and crystal structure determination, 120, 164

 $Na_xCr_xTi_{8-x}O_{16}$ , tunnel structure analysis for stability and sodium ion transport, 116, 296

Na<sub>2/3</sub>Th<sub>1/3</sub>TiO<sub>3</sub>, synthesis, letter to editor, 120, 207

 $NaM_x^{IV}(Ti,Zr)_{2-x}(PO_4)_3$  ( $M = Nb,Mo; 0 \le x \le 1$ ), crystal, magnetic, and electrical properties, **114**, 224

Nb<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> photocatalysts, surface acidity and photocatalytic activity, 115, 187

 $Nd_{1-x}A_xTiO_3$  ( $A = Ca,Sr,Ba; 0 \le x \le 1$ ), structure, transport, and magnetic properties, **114**, 164

Pb<sub>1-r</sub>(TiO)<sub>r</sub>O, electronic lone pair localization and electrostatic energy calculations, 114, 459 Sr<sub>1-x</sub>La<sub>x</sub>TiO<sub>3+0.5x</sub>, layer structure, determination by high-resolution electron microscopy. 117, 88 Sr<sub>3</sub>La<sub>2</sub>Ti<sub>2</sub>O<sub>10</sub>, preparation and characterization, 119, 412 Tb<sub>2</sub>Ba<sub>2</sub>Cu<sub>2</sub>Ti<sub>2</sub>O<sub>11</sub>, synthesis and crystal structure, 117, 213 tion, 116, 131 Ti<sub>2</sub>(Ba<sub>2</sub>Gd)Gd<sub>2-x</sub>Ce<sub>x</sub>Cu<sub>2</sub>O<sub>13</sub>, design and synthesis, **114**, 57  $TiO_2$ 114, 364 effect of laser irradiation, letter to editor, 118, 417 films, photoassisted decomposition of salicyclic acid. 119, 339 photocatalyst, fumed, microstructural characterization, 115, 236 tween, effect of oxygen defect, 119, 237 scattering and XAFS analysis, 120, 151 and role of metal-metal bonding, 114, 346 TiZn<sub>16</sub>, preparation, properties, and crystal structure, 118, 219 Ti<sub>3</sub>Zn<sub>22</sub>, preparation, properties, and crystal structure, 118, 219 tution, 117, 108 and zirconium phosphates, zeolite-like, preparation, 120, 381 Bi<sub>2</sub>O<sub>3</sub>-CaO, 118, 66 Bi<sub>2</sub>O<sub>3</sub>-SrO, 118, 66  $(BiS)_{1+\delta}(Nb_{1+\epsilon}S_2)n$ , misfit layer structures, 115, 274 fumed titanium dioxide photocatalyst, 115, 236 HfO<sub>2</sub> powders, 119, 289 Nb<sub>4</sub>W<sub>13</sub>O<sub>47</sub> oxidation products, 120, 268 Nb<sub>7</sub>W<sub>10</sub>O<sub>47</sub> oxidation products, **119**, 420  $Ca_{10}(PO_4)_6(OH)_2$ , 116, 265 CeVO<sub>3</sub>, 119, 24 CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>, 114, 159 LaCoO<sub>3</sub>, 116, 224  $La_{1-x}Sr_xCoO_{3-\delta}$  (0 <  $x \le 0.50$ ), 118, 323  $Nd_{1-x}A_xTiO_3$  (A = Ca,Sr,Ba;  $0 \le x \le 1$ ), 114, 164 Ba<sub>3</sub>Cr<sub>2</sub>WO<sub>9</sub>, structure and magnetic properties, 120, 238 tures, 120, 216 Mo<sub>7.6</sub>W<sub>1.4</sub>O<sub>25</sub>, crystal structure, 119, 8

 $ATi_2Al_{20}$  (A = rare earths, U), with  $CeCr_2Al_{20}$ -type structure, 114, 337  $Ti_6T_4Al_{43}$  (T = Ti, V, Nb, Ta), with  $Ho_6Mo_4Al_{43}$ -type structure, preparachromium-induced structural changes, analysis by X-ray diffraction, (rutile)(110) surface and Pt, strong-metal-support interaction be-TiO<sub>2</sub>-Pd films, photoassisted decomposition of salicyclic acid, 119, 339 TiO2-NaPO3-Na2B4O7 system, optically nonlinear glasses, Raman TiS and TiSe, monochalcogenides and solid solutions, crystal chemistry Y<sub>2</sub>(Zr<sub>v</sub>Ti<sub>1-v</sub>)<sub>2</sub>O<sub>7</sub>, neutron Rietveld analysis of disorder from Zr substi-Transition metals d<sup>0</sup>, octahedrally coordinated, out-of-center distortions around, 115, 395 Transmission electron microscopy Transmission electron spectroscopy Transport properties electrical,  $(Ca_{0.9}M_{0.1})MnO_3$  (M = Y,La,Ce,Sm,In,Sn,Sb,Pb,Bi), 120, 105 Tungsten  $\alpha$ -, $\beta$ -, and  $\gamma$ -Fe<sub>2</sub>WO<sub>6</sub> phases, magnetic and EPR studies at low tempera-Na<sub>0.75</sub>Mo<sub>1.17</sub>W<sub>0.83</sub>O<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, synthesis and crystal structure, 120, 353 Nb<sub>4</sub>W<sub>13</sub>O<sub>47</sub>, oxidation products, analysis by TEM, 120, 268 Nb<sub>7</sub>W<sub>10</sub>O<sub>47</sub>, oxidation products, analysis by TEM, 119, 420 PbF<sub>2</sub>/GeO<sub>2</sub>/WO<sub>3</sub>, glass doped with Tm<sup>3+</sup> and Tm<sup>3+</sup>/Tb<sup>3+</sup>, blue upconversion emission, 115, 71

Sr<sub>2</sub>Zn<sub>0.2</sub>Ga<sub>0.8-x</sub>Mn(Cr)<sub>x</sub>W<sub>0.2</sub>Ta<sub>0.8</sub>O<sub>6</sub>, mixed valent oxide ceramic, su-

V-W-O-N, synthesis by temperature-programmed reaction, 116, 205

 $AW_2AI_{20}$  (A = La,Ce,Pr,Nd,Eu,U), with CeCr<sub>2</sub>Al<sub>20</sub>-type structure,

 $M^{I}M^{III}(WO_4)_2$  ( $M^{I} = Li,Na,K; M^{III} = Bi,Cr$ ), vibrational properties,

perconducting properties, 116, 355

**117**, 177

WO<sub>3</sub>, 1/3H<sub>2</sub>O, reinvestigation and preparation, 119, 90  $M_2(WO_3)_3SeO_3$  (M = NH<sub>4</sub>,Rb,Cs), synthesis, crystal structure and properties, 120, 112 WP<sub>2</sub>O<sub>7</sub>, synthesis and magnetic and electrical properties, 115, 146 WTh<sub>8</sub>Zr<sub>18</sub>F<sub>4</sub>O<sub>53</sub>, superstructure, associating anion-excess and aniondeficient blocks, 115, 283  $M_x W_6 Y_8$ , (M = Sn, Co, Ni, Pb, La, Ho), amorphous precursors for lowtemperature preparation, 117, 269 Zr<sub>2</sub>(WO<sub>4</sub>)(PO<sub>4</sub>)<sub>2</sub>, structure determination by powder X-ray diffraction, 120, 101 Tunnel structure Cs<sub>9</sub>Mo<sub>9</sub>Al<sub>3</sub>P<sub>11</sub>O<sub>59</sub>, 114, 451  $\beta$ -K<sub>2</sub>Mo<sub>2</sub>O<sub>4</sub>P<sub>2</sub>O<sub>7</sub>, 114, 481  $K_3(Mo)_4(PO_4)_5$ , 114, 61 Na<sub>x</sub>Cr<sub>x</sub>Ti<sub>8-x</sub>O<sub>16</sub>, analysis for stability and sodium ion transport, 116, 296 Na<sub>3</sub>(MoO)<sub>4</sub>(PO<sub>4</sub>)<sub>5</sub>, 114, 543 T(z) diagram  $(AgIn)_{2(1-z)}(MnIn_2)zTe_4$ , 114, 539 Zn<sub>1-z</sub>MnzGa<sub>2</sub>Se<sub>4</sub>, 115, 416 U Ultrasound effect on ceramics and oxides, macro- and microscopic analysis, 115, 532 Uranium CoU<sub>2</sub>O<sub>6</sub>, antiferromagnetic ordering, 114, 595 NaCl-type compound, thermodynamic and magnetic properties, 115, 66  $\alpha$ - and  $\beta$ -Na<sub>2</sub>UO<sub>4</sub>, structure and thermochemistry, 115, 299 NiU<sub>2</sub>O<sub>6</sub>, antiferromagnetic ordering, 114, 595 U<sup>4+</sup>, green-to-blue up-conversion emission in Cs<sub>2</sub>ZrCl<sub>6</sub>, effect of temperature, 116, 113 UAgSb<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305  $UT_2Al_{20}$  (T = Ti,Nb,Ta,Mo,W), with  $CeCr_2Al_{20}$ -type structure, 114, 337

tion, 116, 131 U<sub>3</sub>Co<sub>4</sub>Ge<sub>7</sub>, crystal structure and magnetic properties, 115, 247

 $U_2Fe_{17-x}M_xC_y$  (M = Al,Si, and Ge), magnetic properties, 115, 13 U<sub>3</sub>Ni<sub>3,34</sub>P<sub>6</sub>, preparation, crystal structure, and physical properties, 116, 307

 $U_6T_4Al_{43}$  (T = Ti,V,Nb,Ta), with  $Ho_6Mo_4Al_{43}$ -type structure, prepara-

# $\mathbf{v}$

Cu in  $Ba_{2-x}Bi_xCu_2O_5$  (0  $\leq x \leq 1.5$ ), 114, 585

mixed, Cu(III)/Cu(IV) in perovskite lattice of La<sub>1-x</sub>Sr<sub>x</sub>CuO<sub>3</sub> stabilization under high oxygen pressure, 114, 88

Valence force constants

 $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, relationship to elastic constants, 116, 378

Vanadium

AgV<sub>2</sub>(PO<sub>4</sub>)P<sub>2</sub>O<sub>7</sub>, crystal structure determination, 115, 521

BaV<sub>3</sub>O<sub>8</sub>, hydrothermal synthesis and crystal structure, 117, 407

 $Ba_x V_8 O_{16}$  (x = 1.09(1)), synthesis and crystal structure, 115, 88

BaVO(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) · H<sub>2</sub>O, synthesis, structure, and magnetism, 118, 241

Ba<sub>8</sub>(VO)<sub>6</sub>(PO<sub>4</sub>)<sub>2</sub>(HPO<sub>4</sub>)<sub>11</sub> · 3H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 116, 77

Ba(VO)<sub>2</sub>(SeO<sub>3</sub>)<sub>2</sub>(HSeO<sub>3</sub>)<sub>2</sub>, hydrothermal synthesis and crystal structure, 116, 77

Ba<sub>0.4</sub>V<sub>3</sub>O<sub>8</sub>(VO)<sub>0.4</sub> · nH<sub>2</sub>O, hydrothermal synthesis and crystal structure, 114, 359

CeVO<sub>3</sub>, magnetic and transport properties, 119, 24

Cu<sub>0.5</sub>(OH)<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 117, 157

Cu<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 117, 157

InVO<sub>4</sub>-I, metastable form, crystal structure, 118, 93

 $\text{Li}_x \text{Na}_y \text{V}_2 \text{O}_5$  (0.23  $\leq x + y \leq$  0.37), bronzes obtained from sol-gel process, electrical properties, 118, 10

Li<sub>0.8</sub>VO<sub>2</sub> single crystals, superstructure analysis, 114, 184

 $[Mn(H_2O)]_{1/4}(VO)_{3/4}PO_4 \cdot 2H_2O, synthesis, characterization, and intercalation of vanadyl phosphate with manganese, 116, 400$ 

 $Mn_2VO(PO_4)_2 \cdot H_2O$ , hydrothermal synthesis and structure, 115, 76  $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$ , synthesis and structure, 119, 176

Pb<sub>3</sub>(V,P)<sub>2</sub>O<sub>8</sub>, electronic lone pair localization and electrostatic energy calculations, 114, 459

Pr<sub>4</sub>V<sub>5</sub>Si<sub>4</sub>O<sub>22</sub>, with chevkinite structure, 116, 211

≈SbVO<sub>4</sub>, rutile-type, nonstoichiometry, 116, 369

 $Sr_3V_2O_{6.99}$ , preparation, electronic, and magnetic properties, 118, 292  $TIV_{5-y}Fe_yS_8$  (y=0.5-1.5), crystal structure, chemical reactivity, magnetic properties, and Mössbauer spectroscopy, 119, 147

 $Va_6T_4Al_{43}$  (T = Ti,V,Nb,Ta), with  $Ho_6Mo_4Al_{43}$ -type structure, preparation, 116, 131

VC, synthesis by temperature programmed reduction, 120, 320  $V_2 O_5$ 

effect of laser irradiation, letter to editor, 118, 417

structural correlation with  $(V^{IV}O)[V^{V}O_4] \cdot 0.5[C_3N_2H_{12}]$ , 120, 137

 $A_2V_3O_8$  ( $A = K_1Rb_1NH_4$ ), fresnoite-type vanadium oxides, magnetic susceptibility, **114**, 499

 $A_2V_4O_9$  (A = Rb,Cs), synthesis, crystal structure, and magnetic properties, 115, 174

 $(V^{\rm IV}O)[V^{\rm V}O_4]\cdot 0.5[C_3N_2H_{12}],$  synthesis, crystal structure, and structural correlations with  $V_2O_5$  and other vanadyl compounds, 120, 137

VO(HCO<sub>2</sub>)<sub>2</sub> · H<sub>2</sub>O, compounds based on double layers in, synthesis, 117, 136

VOHPO<sub>4</sub> · 1/2H<sub>2</sub>O, transformation to  $\gamma$ -(VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 119, 349

V-Me-O-N (Me = Mo,W), synthesis by temperature-programmed reaction, 116, 205

 $\gamma$ -(VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, transformation from VOHPO<sub>4</sub> · 1/2H<sub>2</sub>O, 119, 349

VS and VSe, monochalcogenides and solid solutions, crystal chemistry and role of metal-metal bonding, 114, 346

Zn<sub>3</sub>V<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub>, structure determination, 115, 140

Vapor pressure scanning

YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub> oxygen nonstoichiometry, 119, 62

Vibrational behavior

Li<sub>3</sub>AsO<sub>4</sub> guest ions, 115, 83

Vibrational spectra

Ba<sub>4</sub>LiCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub> and Ba<sub>4</sub>NaCuO<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>, 119, 359

Y<sub>2</sub>O<sub>3</sub>, **118,** 163

 $\mathbf{W}$ 

Water

 $\alpha\!\!-$  and  $\beta\!\!-\!\!AlF_3\cdot 3H_2O,$  incorporation of Cu(II), analysis by ESR, 116, 249

 $Al_4(PO_4)_3(HPO_4)F_6$ ,  $(N_2C_6H_{18})_{2.5}$ ,  $3H_2O$ , synthesis and crystal structure, **120**, 197

 $[Ba_2(H_2O)_{10}][Fe(CN)_5NO]_23H_2O], hydrogen-bonding system, \textbf{114,} 102\\ BaMo_4O_{13} \cdot 2H_2O, hydrothermal synthesis and crystal structure, \textbf{116,} 95\\ [Ba_2(OH)_2(H_2O)_{10}][Se_4], synthesis and crystal structure, \textbf{120,} 12$ 

BaVO(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) · H<sub>2</sub>O, synthesis, structure, and magnetism, 118, 24]

Ba<sub>8</sub>(VO)<sub>6</sub>(PO<sub>4</sub>)<sub>2</sub>(HPO<sub>4</sub>)<sub>11</sub> · 3H<sub>2</sub>O, hydrothermal synthesis and crystal structure, **116**, 77

 $Ba_{0.4}V_3O_8(VO)_{0.4} \cdot nH_2O$ , hydrothermal synthesis and crystal structure, 114, 359

 $CaSO_4 \cdot 0.5H_2O$  and  $CaSO_4 \cdot 0.6H_2O$ , crystal structure, determination by powder diffraction methods, 117, 165

(CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>COO · (COOH)<sub>2</sub> · H<sub>2</sub>O, analysis by infrared, polarized Raman, and SERS spectroscopy, **114**, 129

 $2(C_6H_5NH_3)\cdot Mo_3O_{10}\cdot 4H_2O,$  crystal structure, determination from powder data, 117, 103

 $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O$ , X-ray diffraction and NMR analysis, **120**, 231

 $Cs_3LnCl_6 \cdot 3H_2O$  (Ln = La-Nd), thermal dehydration and crystal structure, 116, 329

 $Cu^{11}(1,4\cdot C_4H_4N_2)(C_4O_4)(OH_2)_4$ , synthesis and structure determination with silica gels, 117, 256

CuCl<sub>2</sub> · 2H<sub>2</sub>O, stepwise reaction with 2,2'-bipyridyl in solid state, 119, 299

 $Me^+X - \text{Cu}X_2 - \text{H}_2\text{O}$  ( $Me^+ = \text{K}^+, \text{NH}_4^+\text{Rb}^+, \text{Cs}^+; X^- = \text{Cl}^-, \text{Br}^-$ ), double salts, 114, 385

Cu<sub>0.5</sub>(OH)<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 117, 157

Cu<sub>0.5</sub>[VOPO<sub>4</sub>] · 2H<sub>2</sub>O, hydrothermal synthesis and crystal structure, 117, 157

 $M_2$ HPO<sub>4</sub>- $M'_2$ HPO<sub>4</sub>- $H_2$ O ( $M,M' = Na,K,NH_4$ ), electrical conductivity measurements, 119, 68

 $K_{3/2}Cr_{1/2}Te_{3/2}O_6 \cdot 0.5H_2O$ , electrical properties and structural characterization, **116**, 290

KMo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

K<sub>2</sub>Mo<sub>2</sub>O<sub>10</sub> · 3H<sub>2</sub>O, crystal structure, determination by direct method/ powder diffraction package, 115, 225

KNB<sub>5</sub>GeO<sub>16</sub> · 2H<sub>2</sub>O, with 2D channel network, 115, 373

Li(H<sub>2</sub>O)<sub>4</sub>B(OH)<sub>4</sub> · 2H<sub>2</sub>O, crystal structure and dehydration process, 115, 549

 $LiZnPO_4 \cdot H_2O$ , light-atom positions in, location by powder neutron diffraction, 114, 249

MgHOP<sub>4</sub> · 0.78H<sub>2</sub>O, ambient pressure and temperature synthesis, 114, 598

 $MgO-MgCl_2-H_2O$ , chemical reactions, analysis by time-resolved synchrotron X-ray powder diffraction, **114**, 556

[Mn(H<sub>2</sub>O)]<sub>1/4</sub>(VO)<sub>3/4</sub>PO<sub>4</sub>· 2H<sub>2</sub>O, synthesis, characterization, and intercalation of vanadyl phosphate with manganese, **116**, 400

 $Mn_2VO(PO_4)_2 \cdot H_2O$ , hydrothermal synthesis and structure, 115, 76 ( $Mn_xZn_{1-x}$ )(OH)( $NO_3$ ) $H_2O$  (x = 0.53,1.00), synthesis and characterization, 118, 28

 $NaAlO_2 \cdot 5/4H_2O$ , crystal structure, 115, 126

 $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$ , crystal structure, electronic spectra, and XPS, 115, 208

Na<sub>4</sub>K[Cu(HIO<sub>6</sub>)<sub>2</sub>] · 12H<sub>2</sub>O, crystal structure, electronic spectra, and XPS, **115**, 208

 $Na_{0.13}(V_{0.13}Mo_{0.87})O_3 \cdot nH_2O$ , synthesis and structure, 119, 176

 $N(CH_3)_4H_2PO_4\cdot H_2O,\ FT-1R$  and polarized Raman spectra, **120,** 343  $[NH_3-(CH_2)_2-NH_2-(CH_2)_2-NH_3]_2P_6O_{18}\cdot 2H_2O,\ structural,\ DSC,\ and\ IR\ analysis,\$ **114,**42

NH<sub>4</sub>Mo(H<sub>2</sub>O)O<sub>2</sub>PO<sub>4</sub>, preparation, characterization, and structure, 118, 153

(NH<sub>4</sub>)<sub>2</sub>Mo<sub>3</sub>O<sub>10</sub> · H<sub>2</sub>O, crystal structure, determination by powder diffraction, 116, 422

 $(NH_4)_6[TeMo_6O_{24}]\cdot Te(OH)_6\cdot 7H_2O,$  single crystals, infrared and polarized Raman spectra,  $\bf 118,\, 341$ 

 $(M^{2+})_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O (M^{2+} = Cu,Zn,Co; M^{3+} = Cr)$ , characterization, **119**, 246

Ln<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203

 $M(ReO_4)_2 \cdot 4H_2O$  (M = Co,Zn), preparation and crystal structure determination, 115, 255

(Sr[Fe(CN)<sub>5</sub>NO] · 4H<sub>2</sub>O), crystal structure, determination by X-ray diffraction, **120**, 1

 $M_6[\text{TeMo}_6\text{O}_{24}] \cdot 7\text{H}_2\text{O}$  ( $M = \text{K,NH}_4$ ), single crystals, infrared and polarized Raman spectra, 118, 341 VO(HCO<sub>2</sub>)<sub>2</sub> · H<sub>2</sub>O, compounds based on double layers in, synthesis, 117, 136 VOHPO<sub>4</sub> · 1/2H<sub>2</sub>O, transformation to  $\gamma$ -(VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, 119, 349 WO<sub>3</sub>, 1/3H<sub>2</sub>O, reinvestigation and preparation, 119, 90 YbI<sub>2</sub> · H<sub>2</sub>O, crystal structure, determination by X-ray powder diffraction, 114, 308  $[Zn_2Cr(OH)_6]X \cdot nH_2O$ , where  $X^- = 1/2 \text{ mal}^{2-}$ , cis- $[Cr(mal)_2(H_2O)_2]^-$ , and  $1/3[Cr(mal)_3]^{3-}$  (mal = malonate), malonate intercalation into,  $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$ , cation distribution and coordination chemistry, structural and spectroscopic study, 118, 303 Fe<sub>1-x</sub>O, defect distributions in, paracrystalline descriptions, 117, 398  $\mathbf{X}$ XPS, see X-ray photoelectron spectra X-ray absorption spectroscopy KeFeS<sub>2</sub>, tetrahedral FeS<sup>5</sup>-unit containing, 119, 380 TiO<sub>2</sub>-NaPO<sub>3</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> system optically nonlinear glasses, 120, 151 X-ray adsorption near-edge structure  $Mn_3Al_{2-x}Cr_xGe_3O_{12}$ , 118, 261 X-ray diffraction, see also Powder X-ray diffraction anomalous scattering, for probing Cs2[AuCl2][AuCl4], electronic anisotropy, 118, 383 BaFe<sub>12-2x</sub>Co<sub>x</sub>Ti<sub>x</sub>O<sub>19</sub>, line broadening, 114, 534  $CeO_2-\delta YO_{21.5}$ , 115, 23  $(C_{18}H_{30}N_3)_2 \cdot [Si_8O_{18}(OH)_2] \cdot 41H_2O$ , 120, 231 CO<sub>2</sub> decomposition to carbon, analysis with Ni<sub>0.39</sub>Fe<sub>2.61</sub>O<sub>4-8</sub>, 120, 64 CsGeBr<sub>3</sub>, analysis of pressure-induced phase transition, 118, 20 CsNbOB<sub>2</sub>O<sub>5</sub>, 120, 74  $Cs_4Sb_4O_8(Si_{4(1-x)}Ge_4xO_{12})$  solid solution, 114, 528 CsTaOB<sub>2</sub>O<sub>5</sub>, 120, 74 CuNd<sub>2</sub>Ge<sub>2</sub>O<sub>8</sub>, 120, 254 fumed titanium dioxide photocatalyst, 115, 236 high-resolution synchrotron, La<sub>5</sub>Cu<sub>5</sub>O<sub>13,35</sub>, 118, 170 LíCuO2, symmetry, 114, 590 LiNb(OH)OPO<sub>4</sub>, structural analysis, 114, 317 Li<sub>0.8</sub>VO<sub>2</sub>, 114, 184 Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>Br, 120, 60 Mn<sub>3</sub>B<sub>7</sub>O<sub>13</sub>l, **120**, 60 ReH<sub>x</sub>, in situ formation at high pressure, 118, 299 and in situ Mössbauer spectroscopy, TPR with, in analysis of Fe-Mo-O catalysts, 117, 127 (Sr[Fe(CN)<sub>5</sub>NO] · 4H<sub>2</sub>O) crystal structure, **120**, 1 TiO2, chromium induced changes, 114, 364 X-ray diffractometry powder  $CuS_{1-x}Se_x$  (0  $\leq x \leq$  1), 118, 176 X-ray photoelectron spectra  $Na_4H[Cu(H_2TeO_6)_2] \cdot 17H_2O$  and  $Na_4K[Cu(HIO_6)_2] \cdot 12H_2O$ , 115, 208 X-ray spectroscopy Ca<sub>10-x-y</sub>Cd<sub>x</sub>Pb<sub>y</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> solid solutions, 116, 8 Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, nucleation kinetics, 116, 8

# Y

## Ytterbium

XRD, see X-ray diffraction

 $Ba_{5-y}Sr_yYb_{2-x}Al_2Zr_{1+x}O_{13+x/2},$  structural study, **118**, 180  $Bi_3Yb_5O_{12}$ , related phases, synthesis and characterization, **116**, 68  $YbBa_2Cu_3O_{7-y}$ , FT-IR skeletal study, **119**, 36  $Yb_2Ba_2CuPtO_8$ , synthesis and characterization, **120**, 316

YbCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 Yb<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub>, structural characterization by neutron diffraction, 115, 324 YbI2 · H2O, crystal structure, determination by X-ray powder diffraction, 114, 308  $YbI_2-AI(A = Na,K,Rb,Cs)$  phase diagrams, measurement and calculation, 114, 146 YbNbO<sub>4</sub>, relationship between covalence and displacive phase transition temperature, 116, 28 Yb<sub>2</sub>O<sub>3</sub>, cation array structure, 119, 131 Yb<sub>2</sub>P<sub>6</sub>O<sub>18</sub> · 10H<sub>2</sub>O, preparation and characterization, 119, 203  $MYbTa_6Br_{18}$  and  $M_2YbTa_6Br_{18}$  (M = K,Rb,Cs), crystal structure, 118, 274  $M_2$ YbTa<sub>6</sub>Br<sub>15</sub>O<sub>3</sub> (M = monovalent cation), synthesis and crystal structure, 120, 43 YbTi<sub>2</sub>Al<sub>20</sub>, with CeCr<sub>2</sub>Al<sub>20</sub>-type structure, **114**, 337  $\alpha$ -YbZr<sub>3</sub>F<sub>15</sub> series, cationic distribution, **118**, 389  $Ba_{5-y}Sr_{y}Y_{2-x}Al_{2}Zr_{1+x}O_{13+x/2}$ , structural study, 118, 180 BaY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363 Bi<sub>3</sub>Y<sub>5</sub>O<sub>12</sub>, related phases, synthesis and characterization, 116, 68 (Ca<sub>0.9</sub>Y<sub>0.1</sub>)MnO<sub>3</sub>, electrical transport properties and high-temperature thermoelectric performance, 120, 105 CaY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363 Ca<sub>5</sub>Y<sub>4</sub>S<sub>11</sub>, NaCl-type structure, Rietveld refinement, 119, 45 (1-x)CeO<sub>2</sub> · xYO<sub>1.5</sub>, microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, 120, 290  $CeO_2-\delta YO_{21.5}$ , single crystal X-ray study, 115, 23 Slater functions, formulation by distance between subspaces, 116, 275 SrY<sub>2</sub>S<sub>4</sub>, structure and properties, 117, 363 substitution for La in LaSrFeO4, effects on structure and electrical properties, 115, 456  $Y_6T_4Al_{43}$  (T = Ti, V, Nb, Ta), with  $Ho_6Mo_4Al_{43}$ -type structure, 116, 131 with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 magnetism and crystal structure, 115, 441 YBaCoCu<sub>1-x</sub>Fe<sub>x</sub>O<sub>5</sub>, magnetic behavior, 115, 514 Y<sub>2</sub>Ba<sub>3</sub>Cu<sub>3</sub>Co<sub>2</sub>O<sub>12</sub>, synthesis by solid state reaction, 115, 407 YBaCuFeO<sub>5</sub>, crystal and magnetic structure, 114, 24 YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub>, films, perovskites as substrates for, synthesis and characterization, 116, 193 YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>, sulfur-doped pellets, copper whisker growth from inside, **117,** 151 YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-v</sub>, FT-IR skeletal study, 119, 36 Y<sub>2</sub>BaCuO<sub>5</sub>-YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+x</sub>, quantitative X-ray, 116, 136 YBa<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>, oxygen nonstoichiometry in, vapor pressure scanning, 119, 62 YCa<sub>2</sub>SbFe<sub>4</sub>O<sub>12</sub>, magnetic ordering, 115, 435 YCuAs<sub>2</sub>, with HfCuSi<sub>2</sub>-type structure, preparation, 115, 305 YCuO<sub>2</sub> phase in Y<sub>2</sub>O<sub>3</sub>-Cu-CuO system, analysis by oxygen coulometry, 114, 420 Y2Cu2O5 phase in Y<sub>2</sub>O<sub>3</sub>-Cu-CuO system, analysis by oxygen coulometry, structural characterization by neutron diffraction, 115, 324  $Y_{1-x}A_x$ MnO<sub>3</sub> (A = Ca,Sr,Ba,Pb), magnetoresistance and related properties, effect of internal pressure, letter to editor, 120, 204

YNbO<sub>4</sub>, relationship between covalence and displacive phase transition

 $Y_{1-x}Pr_xSr_2Cu_{2.85}Re_{0.15}O_7$ , retarded Pr f hybridization and  $T_c$  suppres-

temperature, 116, 28

sion, 118, 215

cation array structure, 119, 131

cubic form, vibrational spectroscopy, 118, 163

Y<sub>2</sub>O<sub>3</sub>-Cu-Cu-CuO, analysis by oxygen coulometry, 114, 420

 $Y_2O_3$ 

 $Y_{1/2}Sb_{3/2}^{V}(PO_4)_3$ , preparation and crystal structure, **118**, 104  $M'-YTaO_4$ , synthesis and characterization, letter to editor, **118**, 419  $Y_3TaO_7$  EXAFS analysis and reinvestigation of structure, **114**, 79  $\alpha$ -YZr<sub>3</sub>F<sub>15</sub> series, cationic distribution, **118**, 389

Y<sub>2</sub>(Zr<sub>y</sub>Ti<sub>1-y</sub>)<sub>2</sub>O<sub>7</sub>, neutron Rietveld analysis of disorder from Zr substitution, **117**, 108

### $\mathbf{z}$

#### Zeolites

HEU-type, Ni ions in, location and reducibility, **114**, 108 related pillared metal(IV) phosphate material, preparation, **120**, 381 Zinc

 $BaFe_{12-2x}Ir_xZn_xO_{19}$  ( $x\sim 0.50$ ), magnetic properties, cationic distribution in relation to, 120, 17

 $Ba_2ZnM'F_7Cl$  ( $M' = Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+}, Zn^{2+}$ ), synthesis, magnetic behavior, and structural study, **115**, 98

Ba<sub>2</sub>Zn<sub>2</sub>F<sub>7</sub>Cl, synthesis, magnetic behavior, and structural study, **115**, 98 Ba<sub>2</sub>ZnN<sub>2</sub>, synthesis and crystal structure, **119**, 375

Cu-Zn coprecipitate, effect of incorporation of Al<sup>+3</sup> on structure, 115, 204

Cu<sub>r</sub>Zn<sub>1-r</sub>Nb<sub>2</sub>O<sub>6</sub>, structural relations, 115, 476

 $Ga_2O_3(ZnO)m$  (m = 7,8,9,16), in  $In_2O_3$ -Zn $Ga_2O_4$ -ZnO system, synthesis and single-crystal data, **116**, 170

InGaO<sub>3</sub>(ZnO)<sub>3</sub>, in In<sub>2</sub>O<sub>3</sub>–ZnGa<sub>2</sub>O<sub>4</sub>–ZnO system, synthesis and singlecrystal data, **116**, 170

 $In_2O_3(ZnO)m$  (m = 3.4.5), in  $In_2O_3-ZnGa_2O_4-ZnO$  system, synthesis and single-crystal data. **116.** 170

La<sub>2</sub>ZnIrO<sub>6</sub>, structure and magnetic properties, 116, 199

LiZnPO<sub>4</sub>, structure determination by ab initio methods, 114, 249

 $\delta_i$ -LiZnPO<sub>4</sub>, preparation, structure determination, and thermal transformation, 117, 39

LiZnPO<sub>4</sub> · H<sub>2</sub>O, light-atom positions in, location by powder neutron diffraction, **114**, 249

(Mg,Na,Al)2(Al,Zn)3, crystal structure, 115, 270

 $MnB_2X_4$  (B = Li, Na; X = Cl, Br), nonceramic preparation techniques, 117, 34

 $(Mn_xZn_{1-x})(OH)(NO_3)H_2O$  (x = 0.53,1.00), synthesis and characterization, **118**, 28

Sr<sub>2</sub>Zn<sub>0.2</sub>Ga<sub>0.8-x</sub>Mn(Cr)<sub>x</sub>Tc<sub>0.2</sub>Sb<sub>0.8</sub>O<sub>6</sub>, mixed valent oxide ceramic, superconducting properties, **116**, 355

 $Sr_2Zn_{0.2}Ga_{0.8-x}Mn(Cr)_xW_{0.2}Ta_{0.8}O_6$ , mixed valent oxide ceramic, superconducting properties, 116, 355

Sr<sub>3</sub>ZnIrO<sub>6</sub>, structure and magnetic properties, 117, 300

 $Sr_2Zn_{1-x}Mn_xTe_{1-x}Sb_xO_6$ , mixed valent oxide ceramic, superconducting properties, **116**, 355

Sr<sub>2</sub>ZnN<sub>2</sub>, synthesis and crystal structure, 119, 375

TiZn<sub>16</sub>, preparation, properties, and crystal structure, **118**, 219

Ti<sub>3</sub>Zn<sub>22</sub>, preparation, properties, and crystal structure, 118, 219

Zn-Al layered double hydroxides, preparation by surface modification of layered compound, 117, 337

 $[Zn_2Cr(OH)_6]X \cdot nH_2O$ , where  $X^- = 1/2 \text{ mal}^{2-}$ , cis- $[Cr(mal)_2(H_2O)_2]^-$ , and  $1/3[Cr(mal)_3]^{3-}$  (mal = malonate), malonate intercalation into, 119, 331

ZnCr<sub>2</sub>S<sub>4</sub>, lattice dynamics, 118, 43

ZnCr<sub>2</sub>Se<sub>4</sub>, lattice dynamics, 118, 43

 $(Zn_xCu_{1-x})(OH)_{2-y}(NO_3)_y \cdot zH_2O$ , cation distribution and coordination chemistry, structural and spectroscopic study, **118**, 303

 $Zn_{1-z}MnzGa_2Se_4$ , energy gap values and T(z) diagram, 115, 416

ZnO-based glasses, OH-containing, applications to MOS devices, mechanism. 120, 54

ZnO-B<sub>2</sub>O<sub>2</sub>-SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub>, fluoride-containing glasses, MOS capacitors passivated by, OH-related capacitance-voltage recovery effect in, 118, 212

 $Zn_6(M^{3+})_2(OH)_{16}CO_3 \cdot 4H_2O$  ( $M^{3+}=Cr$ ), characterization, **119**, 246  $Zn_2(OH)PO_4$ , structure-directing effect of organic additives, **114**, 151  $Zn_2P_2O_7$ , phase transformations, analysis, **119**, 219

Zn(ReO<sub>4</sub>)<sub>2</sub> · 4H<sub>2</sub>O, preparation and crystal structure determination, 115, 255

Zn<sub>2</sub>SiO<sub>4</sub>, Fe-doped single crystals, luminescence, 117, 16

Zn<sub>3</sub>V<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub>, structure determination, 115, 140

Zintl phases

bonding, analysis by <sup>119</sup>Sn Mössbauer spectroscopy, **118**, 397 Zirconium

Ag<sub>4</sub>Zr<sub>3</sub>S<sub>8</sub>, superionic conductor, crystal structure and conductivity, 116, 409

 $Ba_{5-y}Sr_yR_{2-x}Al_2Zr_{1+x}O_{13+x/2}$  (R = Gd-Lu,Y,Sc), structural study, **118.** 180

Ca<sub>3</sub>ZrSi<sub>2</sub>O<sub>9</sub>, structure determination from powder diffraction, 115, 464 Cs<sub>2</sub>ZrCl<sub>6</sub>, green-to-blue up-conversion emission from U<sup>4+</sup> ion in, effect of temperature. 116, 113

Li<sub>3</sub>Zr<sub>4</sub>F<sub>19</sub> and Li<sub>4</sub>Zr<sub>4</sub>F<sub>8</sub>, crystal structures, in reanalysis of LiF-ZrF<sub>4</sub> phase diagram, **120**, 187

Na<sub>2</sub>Cu<sub>2</sub>ZrS<sub>4</sub>, synthesis and crystal structure, 117, 30

 $\operatorname{Na}M^{1}_{x}(\operatorname{Ti,Zr})_{2-x}(\operatorname{PO}_{4})_{3}$   $(M = \operatorname{Nb,Mo}; 0 \le x \le 1)$ , crystal, magnetic, and electrical properties, **114**, 224

PbO-ZrO<sub>2</sub>, solution derived powders, homogeneity problems in, 117, 343

Slater functions, formulation by distance between subspaces, **116**, 275 and titanium phosphates, zeolite-like, preparation, **120**, 381

WTh<sub>8</sub>Zr<sub>18</sub>F<sub>4</sub>O<sub>53</sub>, superstructure, associating anion-excess and aniondeficient blocks, **115**, 283

 $Y_2(Zr_yTi_{1-y})_2O_7$ , neutron Rietveld analysis of disorder from Zr substitution, 117, 108

 $\alpha$ -MZr<sub>3</sub>F<sub>15</sub> series (M = Y,In,Lu,Yb,Gd,Eu,Pr,Tl), cationic distribution, 118, 389

 $(1 - x)ZrO_2 \cdot xRO_{1.5}$  (R = Ho,Dy,Tb,Gd), microdomains, solid solutions, and defect fluorite to C-type sesquioxide transition in, analysis, **120**, 290

 $Zr(O_3PC_6H_5)_x(HPO_4)_{2-x}$ , synthesis and stability, 117, 275

Zr<sub>2</sub>(WO<sub>4</sub>)(PO<sub>4</sub>)<sub>2</sub>, structure determination by powder X-ray diffraction, 120, 101